基于并联平台的卫星微振动控制研究进展 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
英文篇名Recent progress of satellite micro-vibration control based on the parallel platform
期刊名称力学与实践
作者于开平; 焦健; 吴迎
栏目专题综述
摘要高分辨率已经成为了目前我国卫星发展的一个重要方向,在这进程中必须要攻克的一个重要技术难题就是对卫星微振动的控制.首先综述了国内外在使用并联平台解决微振动控制问题方面的发展情况,主要是平台研制及性能情况对比,对比发现,基于并联平台的微振动控制技术我国目前相比于国外还存在一定差距.然后对并联平台的典型构型设计、动力学建模、控制系统设计、平台优化以及地面模拟试验等研究进行了详细的总结.最后对我国微振动控制技术未来需要进一步深入研究的问题提出了展望.
英文摘要The high-resolution capability is an important development direction for satellite in our country. In this respect, a key technique is the satellite micro-vibration control. This paper reviews the developments of the parallel platform for solving the problem of micro-vibration control in China and abroad, with a comparison of the platform manufacture and the performance conditions. It is shown that the level of the micro-vibration control technology based on the parallel platform in China is still some way behind those of other advanced countries. This paper reviews the typical configuration design, the dynamics modeling, the control system design, the platform optimization and the ground test of the parallel platform. The further research directions for the micro-vibration control technology in our country are suggested.
关键词卫星; 微振动; 并联平台; 振动控制; 地面试验
英文关键词satellite; micro-vibration; parallel platform; vibration control; ground test
参考文献1 杨雷, 庞世伟, 曲广吉. 高精度航天器微振动集成建模与综合评估技术——进展综述与研究思路. 全国结构动力学学术研讨会, 南昌, 2007
2 许博谦. 星载相机微振动下图像补偿技术研究.[博士论文]. 北 京:中国科学院大学, 2015
3 孟光, 周徐斌. 卫星微振动及控制技术进展. 航空学报, 2015, 36(8):2609-2619
4 Liu CC, Jing XJ, Steve Daley, et al. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 2015, 56-57:55-80
5 庞世伟, 杨雷, 曲广吉. 高精度航天器微振动建模与评估技术最近进展. 强度与环境, 2007, 34(6):1-9
6 谭天乐, 朱春艳, 朱东方等. 航天器微振动测试、隔离、抑制技术综述. 上海航天, 2014, 31(6):36-45
7 Geng ZJ, Haynes LS. Six degree-of-freedom active vibration control using the Stewart platforms. IEEE Transactions on Control Systems Technology, 1994, 2(1):45-53
8 Joshi A, Kim W. Modeling and 6-DOF vibration reduction for a spacecraft with precision sensors. Proceedings of the American Control Conference, IEEE, 2003, 2:1122-1127
9 Anderson EH, Fumo JP, Erwin RS. Satellite ultraquiet isolation technology experiment (SUITE). Aerospace Conference Proceedings, IEEE, 2000, 4:299-313
10 Rahman Z, Spanos J, Laskin R. A six-axis vibration isolation, suppression and steering system for space applications. AIAA 35th Aerospace Sciences Meeting & Exibit, 1997
11 Lin H, McInroy JE. Disturbance attenuation in precise hexapod pointing using positive force feedback. Control Engineering Practice, 2006, 14(11):1377-1386
12 Hauge GS, Campbell ME. Sensors and control of a spacebased six-axis vibration isolation system. Journal of Sound and ibration, 2004, 269(3):913-931
13 Hanieh AA, Preumont A. Multi-axis vibration isolation using different active techniques of frequency reduction. Journal of Vibration and Control, 2011, 17(5):759-768
14 McMickell MB, Kreider T, Hansen E, et al. Optical payload isolation using the miniature vibration isolation system (MVIS-Ⅱ). The 14th International Symposium on:Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2007
15 顾营迎, 霍琦, 李昂等. 用于光学遥感器耐受卫星平台微振动环境地面测试的六自由度平台. 光学精密工程, 2016, 24(9):2200-2207
16 Yang JF, Xu ZB, Wu QW, et al. Dynamic modeling and control of a 6-DOF micro-vibration simulator. Mechanism and Machine Theory, 2016, 104:350-369
17 杨剑峰. 空间光学载荷微振动关键技术研究.[博士论文]. 北京:中国科学院大学, 2016
18 辛建, 徐振邦, 杨剑锋等. 基于 6 维并联机构的空间微振动模拟 器动力学分析及测试. 机器人, 2015, 37(5):581-587
19 辛建. 基于六维并联机构的空间多维微振动模拟器优化设计.[硕士论文]. 北京:中国科学院大学, 2015
20 Sun XQ, Yang BT, Zhao L, et al. Optimal design and experimental analyses of a new micro-vibration control payload-platform. Journal of Sound and Vibration, 2016, 374:43-60
21 赵龙, 杨斌堂, 孙晓芬. 微振动主动隔振平台的超磁致伸缩驱动器设计. 噪声与振动控制, 2014, 34(5):203-209
22 孙晓芬. 基于磁致伸缩平台的微振动主动控制研究.[硕士论文]. 上海:上海交通大学, 2014
23 赵龙. 基于超磁致伸缩驱动微振动主动隔振平台的设计研究.[硕士论文]. 上海:上海交通大学, 2014
24 赵寅, 杨斌堂, 彭志科等. 超磁致伸缩驱动器自适应精密驱动控制研究. 噪声与振动控制, 2013, 33(6):1-4
25 杨斌堂, 赵寅, 彭志科等. 基于 Prandtl-Ishlinskii 模型的超磁致伸缩驱动器实时磁致补偿控制. 光学精密工程, 2013, 21(1):124-130
26 杨斌堂, 徐彭有, 孟光等. 大行程精密定位超磁致伸缩驱动器的设计与控制. 机械工程学报, 2012, 48(1):25-31
27 李乔博, 王超新, 黄修长等. 基于 Stewart 平台微振动主动控制分析与试验. 噪声与振动控制, 2016, 36(3):214-218
28 Wang CX, Xie XL, Chen YH, et al. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators. Journal of Sound and Vibration, 2016, 383:1-19
29 李伟鹏, 黄海, 黄舟. 基于 Stewart 平台的星上微振动主动隔离/抑制. 机械科学与技术, 2015, 34(4):629-635
30 周世骥, 黄海. 基于自适应谐波消除的 Hexapod 平台微振动激 励控制. 航天器环境工程, 2016, 33(1):89-94
31 池维超. 基于电磁隔振器的整星主被动一体化隔振技术研究.[博士论文]. 哈尔滨:哈尔滨工业大学, 2015
32 王东炜. Stewart 平台隔振的主动控制研究.[硕士论文]. 哈尔 滨:哈尔滨工业大学, 2014
33 Wu Y, Yu KP, Jiao J, et al. Dynamic modeling and robust nonlinear control of a six-DOF active micro-vibration isolation manipulator with parameter uncertainties. Mechanism and Machine Theory, 2015, 92:407-435
34 吴迎. 基于 Stewart 平台的卫星微振动主动控制方法研究及装置优化设计.[硕士论文]. 哈尔滨:哈尔滨工业大学, 2014
35 Stewart D. A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, 1965, 180(1):371-386
36 Dasgupta B, Mruthyunjaya TS. The Stewart platform manipulator:a review. Mechanism and Machine Theory, 2000, 35(1):15-40
37 Dasgupta B, Mruthyunjaya TS. Closed-form dynamic equations of the general Stewart platform through the Newton——Euler approach. Mechanism and Machine Theory, 1998, 33(7):993-1012
38 Guo HB, Li HR. Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator. Journal of Mechanical Engineering Science, 2006, 220(1):61-72
39 Beech GS, Rao NNS, Rupert JK, et al. A "Kane's Dynamics" model for the active rack isolation system. National Aeronautics and Space Administration, Marshall Space Flight Center, 2001
40 Zhao Y, Gao F. Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work. Robotica, 2009, 27(2):259-268
41 Gallardo-Alvarado J, Aguilar-Nájera CR, Casique-Rosas L, et al. Kinematics and dynamics of 2 (3-RPS) manipulators by means of screw theory and the principle of virtual work. Mechanism and Machine Theory, 2008, 43(10):1281-1294
42 Lopes AM. Dynamic modeling of a Stewart platform using the generalized momentum approach. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(8):3389-3401
43 Su YX, Duan BY, Zheng CH. Genetic design of kinematically optimal fine tuning Stewart platform for large spherical radio telescope. Mechatronics, 2001, 11(7):821-835
44 Miller K. Optimal design and modeling of spatial parallel manipulators. The International Journal of Robotics Research, 2004, 23(2):127-140
45 Hao F, Merlet JP. Multi-criteria optimal design of parallel manipulators based on interval analysis. Mechanism and Machine Theory, 2005, 40(2):157-171
46 Allais AA, McInroy JE, O'Brien JF. Locally decoupled micromanipulation using an even number of parallel force actuators. IEEE Transactions on Robotics, 2012, 28(6):1323-1334
47 McInroy JE, OBrien JF, Allais AA. Designing micromanipulation systems for decoupled dynamics and control. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):553-563
48 Fattah A, Ghasemi AMH. Isotropic design of spatial parallel manipulators. The International Journal of Robotics Research, 2002, 21(9):811-824
49 Fassi I, Legnani G, Tosi D. Geometrical conditions for the design of partial or full isotropic hexapods. Journal of Robotic Systems, 2005, 22(10):507-518
50 Bandyopadhyay S, Ghosal A. An algebraic formulation of kinematic isotropy and design of isotropic 6-6 Stewart platform manipulators. Mechanism and Machine Theory, 2008, 43(5):591-616
51 Bandyopadhyay S, Ghosal A. An algebraic formulation of static isotropy and design of statically isotropic 6-6 Stewart platform manipulators. Mechanism and Machine Theory, 2009, 44(7):1360-1370
52 Jiang HZ, He JF, Tong ZZ. Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6- DOF parallel manipulator. Mechanism and Machine Theory, 2010, 45(5):722-739
53 Jiang H, Tong Z, He J. Dynamic isotropic design of a class of Gough-Stewart parallel manipulators lying on a circular hyperboloid of one sheet. Mechanism and Machine Theory, 2011, 46(3):358-374
54 He JF, Jiang HZ, Tong ZZ, et al. Study on dynamic isotropy of a class of symmetric spatial parallel mechanisms with actuation redundancy. Journal of Vibration and Control, 2011, 18:1156-1164
55 Mukherjee P, Dasgupta B, Mallik AK. Dynamic stability index and vibration analysis of a flexible Stewart platform. Journal of Sound and Vibration, 2007, 307(3):495-512
56 Lou Y, Liu G, Xu J, et al. A general approach for optimal kinematic design of parallel manipulators. IEEE International Conference on Robotics and Automation, IEEE, 2004
57 Lopes AM, Freire H, Oliveira P, et al. Multi-objective optimization of parallel manipulators using a particle swarm algorithm. The 10th WSEAS International Conference on Applied Informatics and Communications, and 3rd WSEAS International Conference on Biomedical Electronics and Biomedical Informatics. World Scientific and Engineering Academy and Society (WSEAS), 2010
58 Barbosa MR, Pires EJS, Lopes AM. Optimization of parallel manipulators using evolutionary algorithms//Soft Computing Models in Industrial and Environmental Applications, 5th International Workshop (SOCO 2010). Berlin Heidelberg:Springer, 2010. 79-86
59 Gao Z, Zhang D, Ge Y. Design optimization of a spatial six degree-of-freedom parallel manipulator based on artificial intelligence approaches. Robotics and Computer-Integrated Manufacturing, 2010, 26(2):180-189
60 Lou Y, Zhang Y, Huang R, et al. Optimization algorithms for kinematically optimal design of parallel manipulators. IEEE Transactions on Automation Science and Engineering, 2014, 11(2):574-584
61 Xiang JW, Zhao SW, Li DC. A model updating method considering the complex mechanical environment. Results in Physics, 2016, 6:530-533
62 庞世伟, 潘腾, 范立佳等. 一种微振动隔振设计与验证. 强度与环境, 2016, 43(5):17-23
63 庞世伟, 潘腾, 毛一岚等. 某型号卫星微振动试验研究及验证. 航天器环境工程, 2016, 33(3):305-311
64 王泽宇, 邹元杰, 焦安超等. 某遥感卫星平台的微振动试验研究. 航天器环境工程, 2015, 32(3):278-285
65 杨新峰, 白照广, 杨栋等. 动量轮诱导的卫星地面微振动特性研究以及在轨仿真分析. 装备环境工程, 2015, 12(3):15-21
66 Ma G, Sheng P. Acoustic metamaterials:from local resonances to broad horizons. Science Advances, 2016, 2(2):e1501595
2017
39
3
开始页码219
结束页码225,259
DOI10.6052/1000-0879-17-072
基金项目原总装“十二五”预研基金资助项目.
点击率222
作者地址哈尔滨工业大学航天学院, 哈尔滨 150001
英文作者YU Kaiping, JIAO Jian, WU Ying
英文作者地址Aeronautics College of Harbin Institute of Technology, Harbin 150001, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 212515