On the solution of Stokes equations for plane boundaries 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
期刊名称Acta Mechanica Sinica
作者Haiyan Hu; Qiang Tian; Cheng Liu
栏目REVIEW PAPER
摘要Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.
英文栏目名称REVIEW PAPER
关键词Computational dynamics; Multibody system dynamics; Absolute nodal coordinate formulation; Contact and impact; Soft machine; Soft robot; Deployable space structure
参考文献1. Morin, S.A., Shepherd, R.F., Kwok, S.W., et al.:Camouflage and display for soft machines. Science 337, 828-832 (2012)  
2. Rus, D., Tolley, M.T.:Design, fabrication and control of soft robots. Nature 521, 467-475 (2015)  
3. Wehner, M., Truby, R.L., Fitzgerald, D.J., et al.:An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451-455 (2016)  
4. Iida, F., Laschi, C.:Soft robotics:challenges and perspectives. Procedia Comput. Sci. 7, 99-102 (2011)  
5. Li, T.F., Li, G.R., Liang, Y.M., et al.:Review of materials and structures in soft robotics. Chin. J. Theor. Appl. Mech. 48, 756- 766 (2016)
6. Ajaj, R.M., Beaverstock, C.S., Friswell, M.I.:Morphing aircraft:the need for a new design philosophy. Aerosp. Sci. Technol. 49, 154-166 (2016)  
7. Tsuda, Y., Mori, O., Funase, R., et al.:Achievement of IKAROS- Japanese deep space solar sail demonstration mission. Acta Astronaut. 82, 183-188 (2013)  
8. Wasfy, T.M., Noor, A.K.:Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553-613 (2003)  
9. Gerstmayr, J., Sugiyama, H., Mikkola, A.:Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 031016 (2013)  
10. Liu, C., Tian, Q., Hu, H.Y.:New spatial curved beam and shell elements of gradient deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903-1918 (2012)  
11. Gerstmayr, J., Shabana, A.A.:Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45, 109-130 (2006)  
12. Liu, C., Tian, Q., Yan, D., et al.:Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81-95 (2013)  
13. Chang, H.J., Liu, C., Tian, Q., et al.:Three new triangular shell elements of ANCF represented by Bézier triangles. Multibody Syst. Dyn. 35, 321-351 (2015)  
14. Luo, K., Liu, C., Tian, Q., et al.:An efficient model reduction method for buckling analyses of thin shells based on IGA. Comput. Methods Appl. Mech. Eng. 309, 243-268 (2016)  
15. García De Jalón, J.:Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15-33 (2007)  
16. Liu, C., Tian, Q., Hu, H.Y.:Dynamics of a large scale rigid-flexible multibody system with composite laminated plates. Multibody Syst. Dyn. 26, 283-305 (2011)  
17. Shabana, A.A.:ANCF reference node for multibody system analysis. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 229, 109-112 (2014)
18. Volokh, K.Y.:Mechanics of Soft Materials. Israel Institute of Technology (2010)
19. Zhang, Y.Q., Tian, Q., Chen, L.P., et al.:Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods. Multibody Syst. Dyn. 21, 281-303 (2009)  
20. Luo, K., Liu, C., Tian, Q., et al.:Nonlinear static and dynamic analysis of hyper-elastic thin shells via the absolute nodal coordinate formulation. Nonlinear Dyn. 85, 949-971 (2016)  
21. Wang, Q.T., Tian, Q., Hu, H.Y.:Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation. Acta Mech. Sin. 32, 525-534 (2016)  
22. Wang, Q.T., Tian, Q., Hu, H.Y.:Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dyn. 83, 1919-1937 (2016)  
23. Wang, Q.T., Tian, Q., Hu, H.Y.:Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1411-1425 (2014)  
24. Bernardi, C., Debit, N., Maday, Y.:Coupling finite element and spectral methods:first results. Math. Comput. 54, 21-39 (1990)  
25. Seitz, A., Farah, P., Kremheller, J., et al.:Isogeometric dual mortar methods for computational contact mechanics. Comput. Methods Appl. Mech. Eng. 301, 259-280 (2016)  
26. McDevitt, T.W., Laursen, T.A.:A mortar-finite element formulation for frictional contact problems. Int. J. Numer. Methods Eng. 48, 1525-1547 (2000)  
27. Wriggers, P.:Computational Contact Mechanics. Springer, Berlin (2006)
28. Kocak, S., Akay, H.U.:Parallel Schur complement method for large-scale systems on distributed memory computers. Appl. Math. Model 25, 873-886 (2001)  
29. Shepherda, R.F., Ilievskia, F., Choia, W., et al.:Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400-20403 (2011)  
30. Zhao, J., Tian, Q., Hu, H.Y.:Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method. Acta Mech. Sin. 29, 132-142 (2013)  
31. Zhou, X.J., Zhou, C.Y., Zhang, X.X., et al.:Ground simulation tests of spinning deployment dynamics of a solar sail. J. Vib. Eng. 28, 175-182 (2015)
32. Li, P., Liu, C., Tian, Q., et al.:Dynamics of a deployable mesh reflector of satellite antenna:parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 11, 061005 (2016)  
33. Wang, Z., Tian, Q., Hu, H.Y.:Dynamics of rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84, 527-548 (2016)  
34. Wang, Z., Tian, Q., Hu, H.Y.:Nonlinear dynamics and chaotic control of a flexible multibody system with uncertain joint clearance. Nonlinear Dyn. 86, 1571-1597 (2016)  
2017
33
3
开始页码516
结束页码528
DOI10.1007/s10409-017-0660-0
基金项目This work was supported in part by the National Natural Science Foundation of China (Grants 11290150 and 11290151).
点击率213
作者地址MOE Key Lab of Dynamics and Control of Flight Vehicles, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 212492