Bending-induced extension in two-dimensional crystals 
期刊名称Acta Mechanica Sinica
作者Teng Zhang; Hyunwoo Yuk; Shaoting Lin; German A. Parada; Xuanhe Zhao
摘要As polymer networks infiltrated with water,hydrogels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydrogels can robustly adhere to other biological materials,such as bonding of tendons and cartilage on bones and adhesive plaques of mussels,it is challenging to achieve such tough adhesions between synthetic hydrogels and engineering materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts,but the underlying mechanism has not been well understood. It is also challenging to tune systematically the adhesion of hydrogels on solids. Here,we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a combination of experiments,theory,and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model validated by experiments,we reveal the interplays of intrinsic work of adhesion,interfacial strength,and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We further show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates,corresponding to the control of energy dissipation zone and intrinsic work of adhesion,respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.
关键词Adhesion; Hydrogels; Soft materials; Mullins effect
参考文献1. Bobyn, J., Wilson, G., MacGregor, D., et al.:Effect of pore size on the peel strength of attachment of fibrous tissue to poroussurfaced implants. J. Biomed. Mater. Res. 16, 571-584 (1982)  
2. Moretti, M., Wendt, D., Schaefer, D., et al.:Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38, 1846-1854 (2005)  
3. Waite, J.H.:Nature's underwater adhesive specialist. Int. J. Adhes. Adhes. 7, 9-14 (1987)  
4. Desmond, K.W., Zacchia, N.A., Waite, J.H., et al.:Dynamics of mussel plaque detachment. Soft Matter 11, 6832-6839 (2015)  
5. Qin, Z., Buehler, M.J.:Impact tolerance in mussel thread networks by heterogeneous material distribution. Nat. Commun. 4, 2187 (2013)
6. Peppas, N.A., Hilt, J.Z., Khademhosseini, A., et al.:Hydrogels in biology and medicine:from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006)  
7. Lee, K.Y., Mooney, D.J.:Hydrogels for tissue engineering. Chem. Rev. 101, 1869-1880 (2001)  
8. Keplinger, C., Sun, J.-Y., Foo, C.C., et al.:Stretchable, transparent, ionic conductors. Science 341, 984-987 (2013)  
9. Lin, S., Yuk, H., Zhang, T., et al.:Stretchable hydrogel electronics and devices. Adv. Mater. 28, 4497-4505 (2016)  
10. Dong, L., Agarwal, A.K., Beebe, D.J., et al.:Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551-554 (2006)  
11. Beebe, D.J., Moore, J.S., Bauer, J.M., et al.:Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588-590 (2000)  
12. Yu, C., Duan, Z., Yuan, P., et al.:Electronically programmable, reversible shape change in twoand threedimensional hydrogel structures. Adv. Mater. 25, 1541-1546 (2013)  
13. Sudre, G., Olanier, L., Tran, Y., et al.:Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8, 8184-8193 (2012)  
14. Peak, C.W., Wilker, J.J., Schmidt, G.:A review on tough and sticky hydrogels. Colloid Polym. Sci. 291, 2031-2047 (2013)  
15. Wu, C.J., Wilker, J.J., Schmidt, G.:Robust and adhesive hydrogels from crosslinked poly (ethylene glycol) and silicate for biomedical use. Macromol. Biosci. 13, 59-66 (2013)  
16. Rose, S., Prevoteau, A., Elzière, P., et al.:Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382-385 (2014)
17. Waite, J.H., Tanzer, M.L.:Polyphenolic substance of Mytilus edulis:novel adhesive containing L-dopa and hydroxyproline. Science 212, 1038-1040 (1981)  
18. Lee, H., Scherer, N.F., Messersmith, P.B.:Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. USA 103, 12999-13003 (2006)  
19. Qin, Z., Buehler, M.J.:Molecular mechanics of mussel adhesion proteins. J. Mech. Phys. Solids 62, 19-30 (2014)  
20. Lin, Q., Gourdon, D., Sun, C., et al.:Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. USA 104, 3782-3786 (2007)  
21. Brubaker, C.E., Messersmith, P.B.:Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 12, 4326- 4334 (2011)  
22. Guvendiren, M., Messersmith, P.B., Shull, K.R.:Self-assembly and adhesion of DOPA-modified methacrylic triblock hydrogels. Biomacromolecules 9, 122-128 (2007)
23. Lee, B.P., Dalsin, J.L., Messersmith, P.B.:Synthesis and gelation of DOPA-modified poly (ethylene glycol) hydrogels. Biomacromolecules 3, 1038-1047 (2002)  
24. Kim, B.J., Oh, D.X., Kim, S., et al.:Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules 15, 1579-1585 (2014)  
25. Kurokawa,T.,Furukawa,H.,Wang,W.,etal.:Formationofastrong hydrogel-porous solid interface via the double-network principle. Acta Biomater. 6, 1353-1359 (2010)  
26. Yuk, H., Zhang, T., Parada, G.A., et al.:Skin-inspired hydrogelelastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016)  
27. Yuk, H., Zhang, T., Lin, S., et al.:Tough bonding of hydrogels to diverse non-porous surfaces. Nat. Mater. 15, 190-196 (2016)
28. Gent, A., Lai, S.M.:Interfacial bonding, energy dissipation, and adhesion. J. Polym. Sci. Part B 32, 1543-1555 (1994)
29. Creton, C., Kramer, E.J., Brown, H.R., et al.:Adhesion and fracture of interfaces between immiscible polymers:from the molecular to the continuum scale. In:Molecular Simulation Fracture Gel Theory, Springer, 53-136 (2001)
30. Shull, K.R.:Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R-Rep. 36, 1-45 (2002)  
31. Creton, C., Ciccotti, M.:Fracture and adhesion of soft materials:a review. Rep. Prog. Phys. 79, 046601 (2016)  
32. Ahagon, A., Gent, A.:Effect of interfacial bonding on the strength of adhesion. J. Polym. Sci. Polym. Phys. Ed. 13, 1285-1300 (1975)
33. Gent, A.:Adhesion and strength of viscoelastic solids. Is there a relationship between adhesion and bulk properties? Langmuir 12, 4492-4496 (1996)
34. Derail, C., Allal, A., Marin, G., et al.:Relationship between viscoelastic and peeling properties of model adhesives. Part 1. Cohesive fracture. J. Adhes. 61, 123-157 (1997)
35. Derail, C., Allal, A., Marin, G., et al.:Relationship between viscoelastic and peeling properties of model adhesives. Part 2. The interfacial fracture domains. J. Adhes. 68, 203-228 (1998)
36. Xu, D.B., Hui, C.Y., Kramer, E.J.:Interface fracture and viscoelastic deformation in finite size specimens. J. Appl. Phys. 72, 3305-3316 (1992)  
37. Creton, C.:Pressure-sensitive adhesives:an introductory course. MRS Bull. 28, 434-439 (2003)  
38. Villey, R., Creton, C., Cortet, P.-P., et al.:Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter 11, 3480-3491 (2015)  
39. Kim, K.S., Aravas, N.:Elastoplastic analysis of the peel test. Int. J. Solids. Struct. 24, 417-435 (1988)  
40. Kim, K.-S., Kim, J.:Elasto-plastic analysis of the peel test for thin film adhesion. J. Eng. Mater. Technol. 110, 266-273 (1988)  
41. Wei, Y., Hutchinson, J.W.:Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fract. 93, 315-333 (1998)  
42. Persson, B., Albohr, O., Tartaglino, U., et al.:On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. 17, R1 (2005)  
43. Hoefnagels, J., Neggers, J., Timmermans, P., et al.:Copper-rubber interface delamination in stretchable electronics. Scr. Mater. 63, 875-878 (2010)  
44. Vossen, B.G., Schreurs, P.J., van der Sluis, O., et al.:Multi-scale modeling of delamination through fibrillation. J. Mech. Phys. Solids 66, 117-132 (2014)  
45. Neggers, J., Hoefnagels, J., van der Sluis, O., et al.:Multi-scale experimental analysis of rate dependent metal-elastomer interface mechanics. J. Mech. Phys. Solids 80, 26-36 (2015)  
46. Vossen, B., van der Sluis, O., Schreurs, P., et al.:High toughness fibrillating metal-elastomer interfaces:on the role of discrete fibrils within the fracture process zone. Eng. Fract. Mech. 2164, 93-105 (2016)
47. Gong, J.P., Katsuyama, Y., Kurokawa, T., et al.:Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155-1158 (2003)  
48. Sun, J.-Y., Zhao, X., Illeperuma, W.R., et al.:Highly stretchable and tough hydrogels. Nature 489, 133-136 (2012)  
49. Zhang, T., Lin, S., Yuk, H., et al.:Predicting fracture energies and crack-tip fields of soft tough materials. Extreme Mech. Lett. 4, 1-8 (2015)  
50. Maugis, D., Barquins, M.:Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D Appl. Phys. 11, 1989-2023 (1978)  
51. Rahul-Kumar, P., Jagota, A., Bennison, S., et al.:Polymer interfacial fracture simulations using cohesive elements. Acta Mater. 47, 4161-4169 (1999)  
52. Mohammed, I., Liechti, K.M.:Cohesive zone modeling of crack nucleation at bimaterial corners. J. Mech. Phys. Solids 48, 735-764 (2000)  
53. Rahulkumar, P., Jagota, A., Bennison, S., et al.:Cohesive element modeling of viscoelastic fracture:application to peel testing of polymers. Int. J. Solids Struct. 37, 1873-1897 (2000)  
54. Allen, D.H., Searcy, C.R.:A micromechanical model for a viscoelastic cohesive zone. Int. J. Fract. 107, 159-176 (2001)  
55. Yang, Q., Thouless, M., Ward, S.:Numerical simulations of adhesively-bonded beams failing with extensive plastic deformation. J. Mech. Phys. Solids 47, 1337-1353 (1999)  
56. Su, C., Wei, Y., Anand, L.:An elastic-plastic interface constitutive model:application to adhesive joints. Int. J. Plast. 20, 2063-2081 (2004)  
57. Ogden, R., Roxburgh, D.:A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. A. 455, 2861-2877 (1999)  
58. Systèmes, D.:Abaqus Analysis User's Manual. Simulia Corp., Providence (2007)
59. Kendall, K.:Thin-film peeling-the elastic term. J. Phys. D Appl. Phys. 8, 1449 (1975)  
60. Kanan, S.M., Tze, W.T., Tripp, C.P.:Method to double the surface concentration and control the orientation of adsorbed (3- aminopropyl) dimethylethoxysilane on silica powders and glass slides. Langmuir 18, 6623-6627 (2002)  
61. Moon, J.H., Shin, J.W., Kim, S.Y., et al.:Formation of uniform aminosilane thin layers:an imine formation to measure relative surface density of the amine group. Langmuir 12, 4621-4624 (1996)  
62. Sun, T.L., Kurokawa, T., Kuroda, S., et al.:Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932-937 (2013)  
63. Ducrot, E., Chen, Y., Bulters, M., et al.:Toughening elastomers with sacrificial bonds and watching them break. Science 344, 186- 189 (2014)  
64. Autumn, K., Liang, Y.A., Hsieh, S.T., et al.:Adhesive force of a single gecko foot-hair. Nature 405, 681-685 (2000)  
65. Yao, H., Gao, H.:Mechanics of robust and releasable adhesion in biology:bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54, 1120-1146 (2006)  
66. Yuk, H., Lin, S., Ma, C., et al.:Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications 8, 14230 (2017)  
67. Liu, X., Tang, T., Tham, E., et al.:Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells. Proc. Natl. Acad. Sci. 114, 2200-2205 (2017)  
基金项目This work is supported by the Office Naval Research (Grant N00014-14-1-0528), Draper Laboratory, MIT Institute for Soldier Nanotechnologies and the National Science Foundation (Grant CMMI-1253495). Hyunwoo Yuk acknowledges the financial support from Samsung Scholarship. Xuanhe Zhao acknowledges the supports from the National Institutes Health (Grant UH3TR000505). The authors are also grateful for the support from MIT research computing resources and the Extreme Science and Engineering Discovery Environment (XSEDE) (Grant TG-MSS160007).
作者地址1 Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244, USA;
2 Soft Active Materials Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
3 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱:
总访问量: 1831723