A universal method to calculate the surface energy density of spherical surfaces in crystals 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
期刊名称Acta Mechanica Sinica
作者Ao Xu; Wei Shyy; Tianshou Zhao
栏目REVIEW PAPER
摘要Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.
英文栏目名称REVIEW PAPER
关键词Lattice Boltzmann method; Transport phenomena; Multiphase flow; Fuel cells; Flow batteries
参考文献1. Chen, S., Doolen, G.D.:Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329-364 (1998)  
2. Aidun, C.K., Clausen, J.R.:Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439-472 (2010)  
3. Guo, Z., Shu, C.:Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, Singapore (2013)
4. Guo, Z., Zheng, C.:Theory and Applications of Lattice Boltzmann Method. Science Press, Beijing (2009)
5. He, Y., Wang, Y., Li, Q., et al.:Lattice Boltzmann Method:Theory and Applications. Science Press, Beijing (2009)
6. He, Y., Li, Q., Wang, Y., et al.:Lattice Boltzmann method and its applications in engineering thermophysics. Chin. Sci. Bull. 54, 4117-4134 (2009)  
7. Succi, S.:Lattice Boltzmann 2038. EPL 109, 50001 (2015)  
8. Huang, H., Sukop, M.C., Lu, X.-Y., et al.:Multiphase Lattice Boltzmann Methods:Theory and Application. Wiley, New York (2015)
9. Li, Q., Luo, K., Kang, Q., et al.:Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog. Energy Combust. Sci. 52, 62-105 (2016)  
10. Yu, D., Mei, R., Luo, L.-S., et al.:Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aeosp. Sci. 39, 329-367 (2003)  
11. Jiao, K., Li, X.:Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37, 221-291 (2011)  
12. Mukherjee, P.P., Kang, Q., Wang, C.-Y., et al.:Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells- progress and perspective. Energy Environ. Sci. 4, 346-369 (2011)  
13. Zhao, T., Xu, C., Chen, R., et al.:Mass transport phenomena in direct methanol fuel cells. Prog. Energy Combust. Sci. 35, 275- 292 (2009)  
14. Xu, Q., Zhao, T.:Fundamental models for flow batteries. Prog. Energy Combust. Sci. 49, 40-58 (2015)  
15. Yang, Z., Zhang, J., Kintner-Meyer, M.C., et al.:Electrochemical energy storage for green grid. Chem. Rev. 111, 3577-3613 (2011)  
16. Hatzell, K.B., Boota, M., Gogotsi, Y., et al.:Materials for suspension (semi-solid) electrodes for energy and water technologies. Chem. Soc. Rev. 44, 8664-8687 (2015)  
17. Wolfram, S.:Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601 (1983)  
18. Frisch, U., Hasslacher, B., Pomeau, Y., et al.:Lattice-gas automata for the Navier-Stokes equation. Phys. Rev. Lett. 56, 1505 (1986)  
19. McNamara, G.R., Zanetti, G.:Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332 (1988)  
20. Qian, Y., D'Humières, D., Lallemand, P., et al.:Lattice BGK models for Navier-Stokes equation. EPL 17, 479-484 (1992)  
21. He, X., Luo, L.-S.:Theory of the lattice Boltzmann method:from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811 (1997)  
22. Bhatnagar, P.L., Gross, E., Krook, M.:A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511-525 (1954)
23. Xu, K.:Direct Modeling for Computational Fluid Dynamics, vol. 4. World Scientific, Singapore (2015)
24. Xu, K.:Direct modeling for computational fluid dynamics. Acta Mech. Sin. 31, 303-318 (2015)  
25. Lallemand, P., Luo, L.-S.:Theory of the lattice Boltzmann method:dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546 (2000)  
26. d'Humières, D.:Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360, 437-451 (2002)  
27. Huang, H., Krafczyk, M., Lu, X., et al.:Forcing term in singlephase and Shan-Chen-type multiphase lattice Boltzmann models. Phys. Rev. E 84, 046710 (2011)  
28. Guo, Z., Zheng, C., Shi, B., et al.:Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308 (2002)  
29. Guo, Z., Zheng, C.:Analysis of lattice Boltzmann equation for microscale gas flows:relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid Dyn. 22, 465-473 (2008)  
30. Tölke, J., Krafczyk, M.:TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int. J. Comput. Fluid Dyn. 22, 443-456 (2008)  
31. Delbosc, N., Summers, J., Khan, A., et al.:Optimized implementation of the lattice Boltzmann method on a graphics processing unit towards real-time fluid simulation. Comput. Math. Appl. 67, 462-475 (2014)  
32. Lin, L.-S., Chang, H.-W., Lin, C.-A., et al.:Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU. Comput. Fluids 80, 381-387 (2013)  
33. Chang, H.-W., Hong, P.-Y., Lin, L.-S., et al.:Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units. Comput. Fluids 88, 866-871 (2013)  
34. Huang, C., Shi, B., He, N., et al.:Implementation of multi-GPU based lattice Boltzmann method for flow through porous media. Adv. Appl. Math. Mech. 7, 1-12 (2015)  
35. Huang, C., Shi, B., Guo, Z., et al.:Multi-GPU based lattice Boltzmann method for hemodynamic simulation in patient-specific cerebral aneurysm. Commun. Comput. Phys. 17, 960-974 (2015)  
36. Xu, A., Shi, L., Zhao, T., et al.:Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Int. J. Heat Mass Transf. 109, 577-588 (2017)  
37. Gunstensen, A.K., Rothman, D.H., Zaleski, S., et al.:Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320 (1991)  
38. Grunau, D., Chen, S., Eggert, K., et al.:A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids 5, 2557-2562 (1993)  
39. Shan, X., Chen, H.:Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815 (1993)  
40. Shan, X., Chen, H.:Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941 (1994)  
41. Swift, M.R., Osborn, W., Yeomans, J., et al.:Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830 (1995)  
42. Swift, M.R., Orlandini, E., Osborn, W., et al.:Lattice boltzmann simulations of liquid-gas and binary fluid systems. Phys. Rev. E 54, 5041 (1996)  
43. He, X., Chen, S., Zhang, R., et al.:A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 152, 642-663 (1999)  
44. Rothman, D.H., Keller, J.M.:Immiscible cellular-automaton fluids. J. Stat. Phys. 52, 1119-1127 (1988)  
45. Huang, H., Huang, J.-J., Lu, X.-Y., et al.:On simulations of high density ratio flows using color-gradient multiphase lattice Boltzmann models. Int. J. Mod. Phys. C 24, 1350021 (2013)  
46. Huang, H., Huang, J.-J., Lu, X.-Y., et al.:Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Comput. Fluids 93, 164-172 (2014)  
47. Ba, Y., Liu, H., Li, Q., et al.:Multiple-relaxation-time colorgradient lattice Boltzmann model for simulating two-phase flows with high density ratio. Phys. Rev. E 94, 023310 (2016)  
48. Yuan, P., Schaefer, L.:Equations of state in a lattice Boltzmann model. Phys. Fluids 18, 042101 (2006)  
49. Shan, X.:Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys. Rev. E 73, 047701 (2006)  
50. Sbragaglia, M., Benzi, R., Biferale, L., et al.:Generalized lattice Boltzmann method with multirange pseudopotential. Phys. Rev. E 75, 026702 (2007)  
51. Kupershtokh, A., Medvedev, D., Karpov, D., et al.:On equations of state in a lattice Boltzmann method. Comput. Math. Appl. 58, 965-974 (2009)  
52. Gong, S., Cheng, P.:Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids 53, 93- 104 (2012)  
53. Li, Q., Luo, K., Li, X., et al.:Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys. Rev. E 86, 016709 (2012)  
54. Li, Q., Luo, K., Li, X., et al.:Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys. Rev. E 87, 053301 (2013)  
55. Li, Q., Luo, K.:Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Phys. Rev. E 88, 053307 (2013)  
56. Xu, A., Zhao, T., An, L., et al.:A three-dimensional pseudopotential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. Int. J. Heat Fluid Flow 56, 261-271 (2015)  
57. Li,Q.,Zhou,P.,Yan,H.,etal.:RevisedChapman-Enskoganalysis for a class of forcing schemes in the lattice Boltzmann method. Phys. Rev. E 94, 043313 (2016)  
58. Reijers, S., Gelderblom, H., Toschi, F., et al.:Axisymmetric multiphase lattice Boltzmann method for generic equations of state. J. Comput. Sci. 17, 309-314 (2016)  
59. Inamuro, T., Konishi, N., Ogino, F., et al.:A galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Comput. Phys. Commun. 129, 32-45 (2000)  
60. Cahn, J.W., Hilliard, J.E.:Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258-267 (1958)
61. Cahn, J.W., Hilliard, J.E.:Free energy of a nonuniform system. Ⅲ. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688-699 (1959)
62. Allen, S.M., Cahn, J.W.:Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys. Acta Metall. 24, 425-437 (1976)  
63. Wang, H., Chai, Z., Shi, B., et al.:Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations. Phys. Rev. E 94, 033304 (2016)  
64. Inamuro, T., Ogata, T., Tajima, S., et al.:A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198, 628-644 (2004)  
65. Lee, T., Lin, C.-L.:A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206, 16-47 (2005)  
66. Huang, H., Zheng, H., Lu, X.-Y., et al.:An evaluation of a 3D freeenergybased lattice Boltzmann model for multiphase flows with large density ratio. Int. J. Numer. Methods Fluids 63, 1193-1207 (2010)
67. Shao, J., Shu, C., Huang, H., et al.:Free-energy-based lattice Boltzmann model for the simulation of multiphase flows with density contrast. Phys. Rev. E 89, 033309 (2014)  
68. Huang, H., Huang, J.-J., Lu, X.-Y., et al.:A mass-conserving axisymmetric multiphase lattice Boltzmann method and its application in simulation of bubble rising. J. Comput. Phys. 269, 386-402 (2014)  
69. Liang, H., Chai, Z., Shi, B., et al.:Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows. Phys. Rev. E 90, 063311 (2014)  
70. Li, Q., Luo, K., Gao, Y., et al.:Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Phys. Rev. E 85, 026704 (2012)  
71. Liang, H., Shi, B., Guo, Z., et al.:Phase-field-based multiplerelaxationtime lattice Boltzmann model for incompressible multiphase flows. Phys. Rev. E 89, 053320 (2014)  
72. Wang, L., Huang, H.-B., Lu, X.-Y., et al.:Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method. Phys. Rev. E 87, 013301 (2013)  
73. Huang, J.-J., Huang, H., Wang, X., et al.:Numerical study of drop motion on a surface with stepwise wettability gradient and contact angle hysteresis. Phys. Fluids 26, 062101 (2014)  
74. Huang, J.-J., Huang, H., Wang, X., et al.:Wetting boundary conditions in numerical simulation of binary fluids by using phase-field method:some comparative studies and new development. Int. J. Numer. Methods Fluids 77, 123-158 (2015)  
75. Liang, H., Shi, B., Chai, Z., et al.:Lattice Boltzmann modeling of three-phase incompressible flows. Phys. Rev. E 93, 013308 (2016)  
76. Chao, J., Mei, R., Singh, R., et al.:A filter-based, mass-conserving lattice Boltzmann method for immiscible multiphase flows. Int. J. Numer. Methods Fluids 66, 622-647 (2011)  
77. Huang, H., Wang, L., Lu, X.-Y., et al.:Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput. Math. Appl. 61, 3606-3617 (2011)  
78. Cheng, P., Quan, X., Gong, S., et al.:Chapter four-recent analytical and numerical studies on phase-change heat transfer. Adv. Heat Transf. 46, 187-248 (2014)  
79. Gong, S., Cheng, P.:A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int. J. Heat Mass Transf. 55, 4923-4927 (2012)  
80. Li, Q., Kang, Q., Francois, M., et al.:Lattice Boltzmann modeling of boiling heat transfer:the boiling curve and the effects of wettability. Int. J. Heat Mass Transf. 85, 787-796 (2015)  
81. Chai, Z.-H., Zhao, T.-S.:A pseudopotential-based multiplerelaxationtime lattice Boltzmann model for multicomponent/multiphase flows. Acta Mech. Sin. 28, 983-992 (2012)  
82. Sukop, M.C., Huang, H., Lin, C.L., et al.:Distribution of multiphase fluids in porous media:comparison between lattice Boltzmann modeling and micro-X-ray tomography. Phys. Rev. E 77, 026710 (2008)  
83. Huang, H., Li, Z., Liu, S., et al.:Shan-and-chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Methods Fluids 61, 341-354 (2009)  
84. Huang, H., Lu, X.-Y.:Relative permeabilities and coupling effects in steadystate gas-liquid flow in porous media:a lattice Boltzmann study. Phys. Fluids 21, 092104 (2009)  
85. Chen, L., Kang, Q., Mu, Y., et al.:A critical review of the pseudopotential multiphase lattice Boltzmann model:methods and applications. Int. J. Heat Mass Transf. 76, 210-236 (2014)  
86. Shan, X.:Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Phys. Rev. E 77, 066702 (2008)  
87. Li, Q., Luo, K.:Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid-vapor flows. Appl. Therm. Eng. 72, 56-61 (2014)  
88. Li, Q., Luo, K.:Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Phys. Rev. E 89, 053022 (2014)  
89. Martys, N.S., Chen, H.:Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743 (1996)  
90. Kang, Q., Zhang, D., Chen, S., et al.:Displacement of a twodimensional immiscible droplet in a channel. Phys. Fluids 14, 3203-3214 (2002)  
91. Benzi, R., Biferale, L., Sbragaglia, M., et al.:Mesoscopic modeling of a two-phase flow in the presence of boundaries:the contact angle. Phys. Rev. E 74, 021509 (2006)  
92. Li, Q., Luo, K., Kang, Q., et al.:Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys. Rev. E 90, 053301 (2014)  
93. Chai, Z., Zhao, T.:Effect of the forcing term in the multiplerelaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor. Phys. Rev. E 86, 016705 (2012)  
94. Huang, H., Thorne Jr., D.T., Schaap, M.G., et al.:Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)  
95. Gong, S., Cheng, P.:Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int. J. Heat Mass Transf. 64, 122-132 (2013)  
96. Gong, S., Cheng, P.:Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int. J. Heat Mass Transf. 80, 206-216 (2015)  
97. Zhang, C., Cheng, P.:Mesoscale simulations of boiling curves and boiling hysteresis under constant wall temperature and constant heat flux conditions. Int. J. Heat Mass Transf. 110, 319-329 (2017)  
98. Li, Q., Kang, Q., Francois, M., et al.:Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Soft Matter 12, 302-312 (2016)  
99. Li, Q., Zhou, P., Yan, H., et al.:Pinning-depinning mechanism of the contact line during evaporation on chemically patterned surfaces:a lattice Boltzmann study. Langmuir 32, 9389-9396 (2016)  
100. Lou, Q., Guo, Z., Shi, B., et al.:Evaluation of out flow boundary conditions for two-phase lattice Boltzmann equation. Phys. Rev. E 87, 063301 (2013)  
101. Li, L., Jia, X., Liu, Y., et al.:Modified outlet boundary condition schemes for large density ratio lattice Boltzmann models. J. Heat Transf. Trans. ASME 139, 052003 (2017)  
102. Nithiarasu, P., Seetharamu, K., Sundararajan, T., et al.:Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955-3967 (1997)  
103. Guo, Z., Zhao, T.:Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)  
104. Guo, Z., Zhao, T.:A lattice Boltzmann model for convection heat transfer in porous media. Numer. Heat Transf. B Fundam. 47, 157-177 (2005)  
105. Liu, Q., He, Y.-L., Li, Q., et al.:A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 73, 761-775 (2014)  
106. Wang, L., Mi, J., Guo, Z., et al.:A modified lattice Bhatnagar- Gross-Krook model for convection heat transfer in porous media. Int. J. Heat Mass Transf. 94, 269-291 (2016)  
107. Rong, F., Guo, Z., Chai, Z., et al.:A lattice Boltzmann model for axisymmetric thermal flows through porous media. Int. J. Heat Mass Transf. 53, 5519-5527 (2010)  src="http://www.rhhz.net/scibe/crossref_link
2017
33
3
开始页码555
结束页码574
DOI10.1007/s10409-017-0667-6
基金项目This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant 623313).
点击率201
作者地址HKUST Energy Institute, Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 207379