Electromechanical phase transition of a dielectric elastomer tube under internal pressure of constant mass 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
期刊名称Theoretical & Applied Mechanics Letters
作者Song Che; Tongqing Lu; T. J. Wang
摘要The electromechanical phase transition for a dielectric elastomer (DE) tube has been demonstrated in recent experiments, where it is found that the unbulged phase gradually changed into bulged phase. Previous theoretical works only studied the transition process under pressure control condition, which is not consistent with the real experimental condition. This paper focuses on more complex features of the electromechanical phase transition under internal pressure of constant mass. We derive the equilibrium equations and the condition for coexistent states for a DE tube under an internal pressure, a voltage through the thickness and an axial force. We find that under mass control condition the voltage needed to maintain the phase transition increases as the process proceeds. We analyze the entire process of electromechanical phase transition and find that the evolution of configurations is also different from that for pressure control condition.
关键词Phase transition; Dielectric elastomer; Electromechanical coupling; Phase coexistence
参考文献[1] A. O'Halloran, F. O'Malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges, J. Appl. Phys. 104(2008) 071101.
[2] P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles, Macromol. Rapid Commun. 31(2010) 10-36.
[3] R. Pelrine, R. Kornbluh, Q. Pei, et al., High-speed electrically actuated elastomers with strain greater than 100%, Science 287(2000) 836-839.
[4] B.M. O'Brien, T.G. Mckay, T.A. Gisby, et al., Rotating turkeys and selfcommutating artificial muscle motors, Appl. Phys. Lett. 100(2012) 074108.
[5] I.A. Anderson, T.A. Gisby, T.G. Mckay, et al., Multi-functional dielectric elastomer artificial muscles for soft and smart machines, J. Appl. Phys. 112(2012) 041101.
[6] M. Giousouf, G. Kovacs, Dielectric elastomer actuators used for pneumatic valve technology, Smart Mater. Struct. 22(2013) 104010-104015.
[7] L. Viry, A. Levi, M. Totaro, et al., Flexible three-axial force sensor for soft and highly sensitive artificial touch, Adv. Mater. 26(2014) 2659-2664.
[8] J.Y. Sun, C. Keplinger, G.M. Whitesides, et al., Ionic skin, Adv. Mater. 26(2014) 7608-7614.
[9] B.M. O'Brien, E.P. Calius, T. Inamura, et al., Dielectric elastomer switches for smart artificial muscles, Appl. Phys. A 100(2010) 385-389.
[10] S. Chiba, M. Waki, R. Kornbluh, et al., Current status and future prospects of power generators using dielectric elastomers, Smart Mater. Struct. 20(2011) 11516-11543.
[11] R. Pelrine, R.D. Kornbluh, J. Eckerle, et al., Dielectric elastomers:generator mode fundamentals and applications, Proc. SPIE-Int. Soc. Opt. Eng. 4329(2001) 148-156.
[12] R. Kaltseis, C. Keplinger, S.J. Koh, et al., Natural rubber for sustainable highpower electrical energy generation, RSC Adv. 4(2014) 27905-27913.
[13] J.S. Plante, S. Dubowsky, Large-scale failure modes of dielectric elastomer actuators, Int. J. Solids Struct. 43(2006) 7727-7751.
[14] M. Kollosche, J. Zhu, Z. Suo, Complex interplay of nonlinear processes in dielectric elastomers, Phys. Rev. E 85(2012) 976-986.
[15] Z. Zou, Active Shape Control and Phase Coexistence of Dielectric Elastomer Membrane With Patterned Electrodes, J. Appl. Mech. 81(2013) 031016.
[16] T. Lu, Z. Suo, Large conversion of energy in dielectric elastomers by electromechanical phase transition, Acta Mech. Sin. 28(2012) 1106-1114.
[17] X. Zhao, W. Hong, Z. Suo, Electromechanical hysteresis and coexistent states in dielectric elastomers, Phys. Rev. B 76(2007) 1283.
[18] V.P. Carey, Liquid-Vapor Phase-Change Phenomena:An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Hemisphere Pub. Corp, 1992.
[19] L. An, F. Wang, S. Cheng, et al., Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube, Smart Mater. Struct. 24(2015) 035006.
[20] Z. Suo, Theory of dielectric elastomers, Acta Mech. Solida Sin. 23(2012) 549-578.
[21] A.N. Gent, A New Constitutive Relation for Rubber, Rubber Chem. Technol. 69(2012) 59-61.
[22] J.C. Maxwell, A Treatise on Electricity and Magnetism, Longmans Green & Co, 1913, pp. 87-92.
[23] T. Lu, L. An, J. Li, et al., Electro-mechanical coupling bifurcation and bulging propagation in a cylindrical dielectric elastomer tube, J. Mech. Phys. Solids 85(2015) 160-175.
2017
7
3
开始页码121
结束页码125
DOI10.1016/j.taml.2017.02.004
点击率157
作者地址State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 212436