Nonlinear mechanics of a ring structure subjected to multi-pairs of evenly distributed equal radial forces 
期刊名称Acta Mechanica Sinica
作者Q. Chen; F. Sun; Z. Y. Li; L. Taxis; N. Pugno
摘要Combining the elastica theory, finite element (FE) analysis, and a geometrical topological experiment, we studied the mechanical behavior of a ring subjected to multi-pairs of evenly distributed equal radial forces by looking at its seven distinct states. The results showed that the theoretical predictions of the ring deformation and strain energy matched the FE results very well, and that the ring deformations were comparable to the topological experiment. Moreover, no matter whether the ring was compressed or tensioned by N-pairs of forces, the ring always tended to be regular polygons with 2N sides as the force increased, and a proper compressive force deformed the ring into exquisite flower-like patterns. The present study solves a basic mechanical problem of a ring subjected to lateral forces, which can be useful for studying the relevant mechanical behavior of ring structures from the nano- to the macro-scale.
关键词Ring structures; Mechanical properties; Shape; Strain energy
参考文献1. Feng, C., Liew, K.W.: A molecular mechanics analysis of the buckling behavior of carbon nanorings under tension. Carbon 47, 3508-3514 (2009)
2. Karamanos, S.A., Eleftheriadis, C.: Collapse of pressurized elastoplastic tubular members under lateral loads. Int. J. Mech. Sci. 46, 35-56 (2004)
3. Bao, R.H., Yu, T.X.: Impact and rebound of an elastic-plastic ring on a rigid target. Int. J. Mech. Sci. 91, 55-63 (2015)
4. Timoshenko, S.: On the distribution of stress in a circular ring compressed by two forces along a diameter. Phil. Mag. 44, 1014- 1019 (1922)
5. Chianese, R.B., Erdlac, R.J.: The general solution to the distribution of stresses in a circular ring compressed by two forces acting along a diameter. Q. J. Mech. Appl. Math. 41, 239-247 (1988)
6. Batista, M., Usenik, J.: Stresses in a circular ring under two forces acting along a diameter. J. Strain Anal. Eng. 31, 75-78 (1996)
7. Rao, S.S., Sundararajan, V.: In-plane flexural vibrations of circular rings. J. Appl. Mech. 36, 620-625 (1969)
8. Kirkhope, J.: In-plane vibration of a thick circular ring. J. Sound Vib. 50, 219-227 (1977)
9. Wang, C.M., Duan, W.H.: Free vibration of nanorings/arches based on nonlocal elasticity. J. Appl. Phys. 104, 014303 (2008)  
10. Moosavi, H., Mohammadi, M., Farajpour, A., et al.: Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory. Phys. E 44, 135-140 (2011)
11. Chen, N., Lusk, M.T., van Duin, A.C.T., et al.: Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys. Rev. B 72, 085416 (2005)  
12. von Karman, T.: The buckling of thin cylindrical shells under axial compression. J. Aeronaut. Sci. 8, 303-312 (1941)  
13. Bardi, F.C., Yun, H.D., Kyriakides, S.: On the axisymmetric progressive crushing of circular tubes under axial compression. Int. J. Solids Struct. 40, 3137-3155 (2003)
14. Marsolek, J., Reimerdes, H.G.: Energy absorption ofmetallic cylindrical shells with induced non-axisymmetric folding patterns. Int. J. Impact Eng. 30, 1209-1223 (2004)
15. Ghosh, S.K., Johnson, W., Reid, S.R., et al.: On thin rings and short tubes subjected to centrally opposed concentrated loads. Int. J. Mech. Sci. 23, 183-194 (1981)
16. Reddy, T., Reid, S.: Phenomena associated with the lateral crushing of metal tubes between rigid plates. Int. J. Solids Struct. 16, 545- 562 (1980)
17. Gupta, N., Sekhon, G., Gupta, P.: Study of lateral compression of round metallic tubes. Thin Wall Struct. 43, 895-922 (2005)
18. Olabi, A.G., Morris, E., Hashmi, M.S.J.: Metallic tube type energy absorbers: a synopsis. Thin Wall Struct. 45, 706-726 (2007)
19. Miller, W., Smith, C.W., Scarpa, F., et al.: Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos. Sci. Technol. 70, 1049-1056(2010)
20. Liu, J.L., Xia, R.: A unified analysis of a micro-beam, droplet and CNT ring adhered on a substrate: calculation of variation with movable boundaries. Acta Mech. Sin. 29, 62-72 (2013)
21. Li, R., Li, M., Su, Y., et al.: An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter 9, 8476-8482 (2013)
22. Bisshopp, K.E., Drucker, D.C.: Large deflectionof cantilever beams. Q. Appl. Math. 3, 272-275 (1945)  
23. Elliott, J.A., Sandler, J.K., Windle, A.H., et al.: Collapse of singlewall carbon nanotubes is diameter dependent. Phys. Rev. Lett. 92, 095501 (2004)  
24. Pugno, N.: The design of self-collapsed super-strong nanotube bundles. J. Mech. Phys. Solids 58, 1397-1410 (2010)
25. Chen, Q., Pugno, N.: Competition between in-plane buckling and bending collapses in nanohoneycombs. Europhys. Lett. 98, 16005 (2012)  
26. Bažant, Z.P., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. World Scientific, Singapore, 278- 294 (2010)
27. Guo, Y.L., Zhao, S.Y., Pi, Y.L., et al.: An experimental study on out-of-plane inelastic buckling strength of fixed steel arches. Eng. Struct. 98, 118-127 (2015)
28. Batista, M.: A simplified method to investigate the stability of cantilever rod equilibrium forms. Mech. Res. Commun. 67, 13-17 (2015)
29. Gonzalez,O.,Maddocks, J.H., Schuricht, F., et al.:Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. 14, 29-68 (2002)
30. Ma, Y., Jang, K.I., Wang, L., et al.: Design of strain-limiting substrate materials for stretchable and flexible electronics. Adv. Funct. Mater. 26, 5345-5351 (2016)
作者地址1 Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
2 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210096, China;
3 School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology(QUT), Brisbane, QLD 4001, Australia;
4 Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy;
5 School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
6 Ket Lab, Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱:
总访问量: 1831746