Dynamic analysis of beam-cable coupled systems using Chebyshev spectral element method 
期刊名称Acta Mechanica Sinica
作者Yi-Xin Huang; Hao Tian; Yang Zhao
摘要The dynamic characteristics of a beam-cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections, numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finite-element method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam-cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.
关键词Beam-cable coupled system; Double-beam system; Chebyshev spectral element method; Natural frequency; Mode shape
参考文献1. Spak, K.S., Agnes, G.S., Inman, D.J.: Bakeout effects on dynamic response of spaceflight cables. J. Spacecr. Rockets 51, 1721-1734 (2014)
2. Coombs, D.M., Goodding, J.C., Babuska, V., et al.: Dynamic modeling and experimental validation of a cable-loaded panel. J. Spacecr. Rockets 48, 958-973 (2011)
3. Ardelean, E.V., Babuska, V., Goodding, J.C., et al.: Cable effects study: tangents, rabbit holes, dead ends, and valuable results. J. Spacecr. Rockets 52, 569-583 (2015)
4. Choi, J., Inman, D.J.: Spectrally formulated modeling of a cableharnessed structure. J. Sound Vib. 333, 3286-3304 (2014)
5. Goodding, C.J., Griffee, G.J., Ardelean, E.V.: Parameter estimation and structural dynamic modeling of electrical cable harnesses on precision structures. AIAA Paper, 2008-1852 (2008)
6. Choi, J.,Inman, D.J.: Development of predictivemodelingfor cable harnessed structure. AIAA Paper, 2013-1888 (2013)
7. Dai, G.M., Zhang, W.H.: Cell size effects for vibration analysis and design of sandwich beams. Acta Mech. Sin. 25, 353-365 (2009)
8. Stojanovi, V., Kozi, P.: Vibrations and Stability of Complex Beam Systems. Springer Tracts in Mechanical Engineering. Springer, Heidelberg (2015)
9. Hamed, Y.S., Sayed, M., Cao, D.X., et al.: Nonlinear study of the dynamic behavior of a string-beam coupled system under combined excitations. Acta Mech. Sin. 27, 1034-1051 (2011)
10. Babuska, V., Coombs, D.M., Goodding, J.C., et al.: Modeling and experimental validation of space structures with wiring harnesses. J. Spacecr. Rockets 47, 1038-1052 (2010)
11. Spak, K.S.: Modeling Cable Harness Effects on Spacecraft Structures. Virginia Polytechnic Institute and State University, Blacksburg (2014)
12. Spak, K., Agnes, G., Inman, D.: Parameters for modeling stranded cables as structural beams. Exp. Mech. 54, 1613-1626 (2014)
13. Spak, K., Agnes, G., Inman, D.: Comparison of Damping Models for Space Flight Cables, Topics in Dynamics of Civil Structures, Volume 4: Proceedings of the 31st IMAC, A Conference on Structural Dynamics. Springer, New York (2013)
14. Spak, K.S., Agnes, G.S., Inman, D.J.: Modeling vibration response and damping of cables and cabled structures. J. Sound Vib. 336, 240-256 (2015)
15. Spak, K.S., Agnes, G.S., Inman, D.: Inclusion of shear effects, tension, and damping in a DTF beam model for cable modeling. AIAA Paper, 2014-0491 (2014)
16. Choi, J.: Investigation of the Dynamic Behavior of a CableHarnessed Structure. Virginia Polytechnic Institute and State University, Blacksburg (2014)
17. Remedia, M., Aglietti, G.S., Richardson, G.: Modelling the effect of electrical harness on microvibration response of structures. Acta Astronaut. 109, 88-102 (2015)
18. Zhang, Z.G., Huang, X.C., Zhang, Z.Y., et al.: On the transverse vibration of Timoshenko double-beam systems coupled with various discontinuities. Int. Mech. Sci. 89, 222-241 (2014)
19. Yagci, B., Filiz, S., Romero, L.L., et al.: A spectral-Tchebychev technique for solving linear and nonlinear beam equations. J. Sound Vib. 321, 375-404 (2007)
20. Filiz, S., Ozdoganlar, O.B., Romero, L.A.: An analytical model for micro-endmill dynamics. J. Vib. Control 14, 1125-1150 (2008)
基金项目This work was supported by the National Basic Research Program of China (Grant 2013CB733004).
作者地址School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 1831664