Analytical and computational modelling for wave energy systems:the example of oscillating wave surge converters 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
期刊名称Acta Mechanica Sinica
作者Fré;;ric Dias; Emiliano Renzi; Sarah Gallagher; Dripta Sarkar; Yanji Wei; Thomas Abadie; Cathal Cummins; Ashkan Rafiee
栏目THEMED ARTICLES FOR CCTAM 2017 SPECIAL ISSUE-FLUID MECHANICS
摘要The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.
英文栏目名称THEMED ARTICLES FOR CCTAM 2017 SPECIAL ISSUE-FLUID MECHANICS
关键词Wave energy; Wave energy converter; Slamming; Wave resource
参考文献1. Renzi, E., Doherty, K., Henry, A., et al.:How does Oyster work? The simple interpretation of Oyster mathematics. Eur. J. Mech. B/Fluids 47, 124-131 (2014)  
2. Babarit, A., Hals, J., Muliawan, M. J., et al.:Numerical benchmarking study of a selection of wave energy converters. Renewable Energy 41, 44-63 (2012). With corrigendum in Renewable Energy 74, 955-957 (2015)  
3. Tan Loh, T., Greaves, D., Mäki, T., et al.:Numerical modelling of the WaveRoller device using OpenFOAM. In:Proceedings of the Third Asian Wave and Tidal Energy Conference, Singapore, 134-143 (2016)
4. Thomas, G.:The theory behind the conversion of ocean wave energy:a review. In:Ocean Wave Energy, Springer, Germany (2008)
5. Falnes, J., Hals, J.:Heaving buoys, point absorbers and arrays. Philos. Trans. R. Soc. A 370, 246-277 (2012)  
6. Tiron, R., Mallon, F., Dias, F., et al.:The challenging life of wave energy devices at sea:a few points to consider. Renew. Sustain. Energy Rev. 43, 1263-1272 (2015)  
7. Bredmose, H., Peregrine, D. H., Bullock, G. N.:Violent breaking wave impacts. Part 2:modelling the effect of air. J. Fluid Mech. 641, 389-430 (2009)
8. Goda, Y.:Random Seas and Design of Maritime Structures. World Scientific, Singapore. (2000)
9. Peregrine, D. H.:Water-wave impact on walls. Annu. Rev. Fluid Mech. 35, 23-43 (2003)  
10. Braeunig, J. -P., Brosset, L., Dias, F., et al.:Phenomenological study of liquid impacts through 2D compressible two-fluid numerical simulations. In:Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan, 21-29 (2009)
11. Dias, F., Ghidaglia, J. -M.:Slamming:Recent progress in the evaluation of impact pressures. Annu. Rev. Fluid Mech. 50 (2018). doi:10. 1146/annurev-fluid-010816-060121
12. Wei, Y., Abadie, T., Henry, A., et al.:Wave interaction with an oscillating wave surge converter, Part b:slamming. Ocean Eng. 113, 319-334 (2016)  
13. Henry, A., Rafiee, A., Schmitt, P., et al.:The characteristics of wave impacts on an oscillating wave surge converter. J. Ocean Wind Energy 1, 101-110 (2014)
14. Henry, A., Kimmoun, O., Nicholson, J., et al.:A two-dimensional experimental investigation of slamming of an oscillating wave surge converter. In:Proceedings of the Twenty-fourth International Offshore and Polar Engineering Conference, Busan, Korea, 15-20 (2014)
15. Henry, A., Abadie, T., Nicholson, J., et al.:The vertical distribution and evolution of slam pressure on an oscillating wave surge converter. In:Proceedings of ASME 34th International Conference on Ocean, Offshore and Arctic Engineering, Newfoundland, Canada, May 31-June 5 (2015). doi:10. 1115/OMAE2015-41290
16. von Kármán, T.:The impact of seaplanes floats during landing. NACA Technical note no. 231, October 1929, Washington DC, USA (1929)
17. Wagner, H.:Über Stoß-und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech. 12, 193-215 (1932) (in German)  
18. Zhao, R., Faltinsen, O.:Water entry of two-dimensional bodies. J. Fluid Mech. 246, 593-612 (1993)  
19. Lugni, C., Brocchini, M., Faltinsen, O. M.:Wave impact loads:the role of the flip-through. Phys. Fluids 18, 122101 (2006). doi:10. 1063/1. 2399077  
20. Wei, Y., Rafiee, A., Henry, A., et al.:Wave interaction with an oscillating wave surge converter, Part I:viscous effects. Ocean Eng. 104, 185-203 (2015)  
21. Abadie, T., Dias, F.:Numerical study of wave interaction with a modular oscillating wave surge converter. In:Proceedings of the Twenty-sixth International Offshore and Polar Engineering Conference, Rhodes, Greece, 1021-1028 (2016)
22. Wei, Y., Dias, F.:Numerical study of three dimensional effects of wave impact on an oscillating wave surge converter. In:Proceedings of the ASME 2015 International Conference on Ocean, Offshore and Arctic Engineering, St. Johns, Newfoundland, Canada (2015)
23. Wei, Y., Abadie, T., Dias, F.:A cost-effective method for modelling wave-OWSC interaction. In:Proceedings of the Twenty-sixth International Offshore and Polar Engineering Conference, Rhodes, Greece, 658-664 (2016)
24. Lucy, L. B.:A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013-1020 (1977)  
25. Gingold, R. A., Monaghan, J. J.:Smoothed particle hydrodynamics:Theory and application to nonspherical stars. Mon. Not. R. Astron. Soc. 181, 375-389 (1977)  
26. Monaghan, J. J., Gingold, R. A.:Shock simulation by the particle method SPH. J. Comput. Phys. 52, 374-389 (1983)  
27. Monaghan, J. J.:Smoothed Particle Hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech. 44, 323-346 (2012)  
28. Rafiee, A., Dias, F.:Numerical simulation of wave interaction with an oscillating wave surge converter. In:Proceedings of the ASME 32nd International Conference Ocean Offshore Arcitc Engineering ASME, Reston, VA (2013)
29. Evans D. V.:Some theoretical aspects of three-dimensional waveenergy absorbers. In:Proceedings 1st Symposium Wave Energy Utilization Gothenburg, Sweden (1979)
30. Falnes, J.:Radiation impedence matrix and optimum power absorption for interacting oscillators in surface waves. Appl. Ocean Res. 2, 75-80 (1980)  
31. Mavrakos, S. A., McIver, P.:Comparison of methods for computing hydrodynamic characteristics of arrays of wave power devices. Appl. Ocean Res. 19, 283-291 (1997)  
32. Falcão, A. F. O.:Wave-power absorption by a periodic linear array of oscillating water columns. Ocean Eng. 29, 1163-1186 (2002)  
33. Babarit, A.:Impact of long separating distances on the energy production of two interacting wave energy converters. Ocean Eng. 37, 718-729 (2010)  
34. Borgarino, B., Babarit, A., Ferrant, P.:An implementation of the fast multipole algorithm for wave interaction problems on sparse arrays of floating bodies. J. Eng. Math. 77, 51-68 (2012)  
35. Grilli, S., Guyenne, P., Dias, F.:A fully nonlinear model for three-dimensional overturning waves over arbitrary bottom. Int. J. Numer. Methods Fluids 35, 829-867 (2001)  
36. Fochesato, C., Dias, F.:A fast method for nonlinear threedimensional free-surface waves. Proc. R. Soc. Lond. A 462, 2715-2735 (2006)  
37. Guerber, E., Benoit, M., Grilli, S., et al.:A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion. Eng. Anal. Bound. Elem. 36, 1151-1163 (2012)  
38. Jamois, E., Fuhrman, D. R., Bingham, H. B., et al.:A numerical study of nonlinear wave run-up on a vertical plate. Coast. Eng. 53, 929-945 (2006)  
39. Renzi, E., Dias, F.:Resonant behaviour of the oscillating wave surge converter in a channel. J. Fluid Mech. 701, 482-51 (2012)  
40. Renzi, E., Dias, F.:Relations for a periodic array of flap-type wave energy converters. Appl. Ocean Res. 39, 31-39 (2012)
41. Renzi, E., Dias, F.:Hydrodynamics of the Oscillating Wave Surge Converter in the open ocean. Eur. J. Mech. B/Fluids 41, 1-10 (2013)  
42. Sarkar, D., Renzi, E., Dias, F.:Wave power extraction by an oscillating wave surge converter in random seas. In:Proceedings of the ASME 2013 International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France (2013)
43. Sarkar, D., Renzi, E., Dias, F.:Wave farm modelling of Oscillating Wave Surge Converters. Proc. R. Soc. Lond. A 470, 20140118 (2014)  
44. Mei, C. C., Sammarco, P., Chan, E. S., et al.:Subharmonic resonance of proposed storm gates for Venice lagoon. Proc. R. Soc. Lond. A 444(1920), 257-265 (1994)  
45. Sammarco, P., Tran, H. H., Mei, C. C.:Subharmonic resonance of Venice gates in waves. Part 1. Evolution equation and uniform incident waves. J. Fluid Mech. 349, 295-325 (1997)
46. Michele, S., Sammarco, P., d'Errico, M., et al.:Flap gate farm:From Venice lagoon defense to resonating wave energy production. Part 2:Synchronous response to incident waves in open sea. Appl. Ocean Res. 52, 43-61 (2015)
47. Sarkar, D., Doherty, K., Dias, F.:The modular concept of the Oscillating Wave Surge Converter. Renew. Energy 85, 484-497 (2016)  
48. Child, B. F. M., Venugopal, V.:Optimal configurations of wave energy device arrays. Ocean Eng. 37(16), 1402-1417 (2010)  
49. Noad, I. F., Porter, R.:Optimisation of arrays of flap-type oscillating wave surge converters. Appl. Ocean Res. 50, 237-253 (2015)  
50. Sarkar, D., Contal, E., Vayatis, N.
2017
33
4
开始页码647
结束页码662
DOI10.1007/s10409-017-0683-6
点击率221
作者地址1 School of Mathematics and Statistics, University College Dublin, MaREI Centre, Belfield, Dublin 4, Ireland;
2 Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, UK;
3 Research, Environment and Applications Division, Met Éireann, Glasnevin, Dublin 9, Ireland;
4 Department of Engineering Sciences, University of Oxford, Oxford, UK;
5 Advanced Production Engineering, University of Groningen, Groningen, The Netherlands;
6 Dublin City University, Glasnevin, Dublin 9, Ireland;
7 School of Engineering, University of Edinburgh, Edinburgh, UK;
8 Carnegie Clean Energy Limited, Northam, Australia

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 553170