Unsteady bio-fluid dynamics in flying and swimming 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
期刊名称Acta Mechanica Sinica
作者Hao Liu; Dmitry Kolomenskiy; Toshiyuki Nakata; Gen Li
栏目THEMED ARTICLES FOR CCTAM 2017 SPECIAL ISSUE-FLUID MECHANICS
摘要Flying and swimming in nature present sophisticated and exciting ventures in biomimetics, which seeks sustainable solutions and solves practical problems by emulating nature's time-tested patterns, functions, and strategies. Bio-fluids in insect and bird flight, as well as in fish swimming are highly dynamic and unsteady; however, they have been studied mostly with a focus on the phenomena associated with a body or wings moving in a steady flow. Characterized by unsteady wing flapping and body undulation, fluid-structure interactions, flexible wings and bodies, turbulent environments, and complex maneuver, bio-fluid dynamics normally have challenges associated with low Reynolds number regime and high unsteadiness in modeling and analysis of flow physics. In this article, we review and highlight recent advances in unsteady bio-fluid dynamics in terms of leading-edge vortices, passive mechanisms in flexible wings and hinges, flapping flight in unsteady environments, and micro-structured aerodynamics in flapping flight, as well as undulatory swimming, flapping-fin hydrodynamics, body-fin interaction, C-start and maneuvering, swimming in turbulence, collective swimming, and micro-structured hydrodynamics in swimming. We further give a perspective outlook on future challenges and tasks of several key issues of the field.
英文栏目名称THEMED ARTICLES FOR CCTAM 2017 SPECIAL ISSUE-FLUID MECHANICS
关键词Flying; Swimming; Unsteady bio-fluid dynamics; Aerodynamics; Hydrodynamics; Biomimetics
参考文献1. Liu, H., Ravi, S., Kolomenskiy, D., et al.:Biomechanics and biomimetics in insect-inspired flight systems. Phil. Trans. R. Soc. Lond. B 371, 20150390 (2016). doi:10. 1098/rstb. 2015. 0390  
2. Lepora, N. F., Verschure, P., Prescott, T. J.:The state of the art in biomimetics. Bioinspir. Biomim. 8, 013001 (2013). doi:10. 1088/1748-3182/8/1/013001  
3. Huang, W. X., Alben, S.:Fluid-structure interactions with applications to biology. Acta Mech. Sin. 32, 977-979 (2016)  
4. Wang, S. Z., He, G., Zhang, X.:Self-propulsion of flapping bodies in viscous fluids:recent advances and perspectives. Acta Mech. Sin. 32, 980-990 (2016)  
5. Wu, T.:Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 25-58 (2011). doi:10. 1146/annurev-fluid-122109-160648  
6. Huhn, F., van Rees, W., Gazzola, M., et al.:Quantitative flow analysis of swimming dynamics with coherent lagrangian vortices. Chaos 25, 087405 (2015). doi:10. 1063/1. 4919784  
7. Shyy, W., Lian, Y., Liu, H., et al.:Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, Cambridge (2007)
8. Kruyt, J. W., van Heijst, G. F., Altshuler, D. L., et al.:Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. J. R. Soc. Interface 12, 20150051 (2015)  
9. Lu, Y., Shen, G. X., Lai, G. J.:Dual leading-edge vortices on flapping wings. J. Exp. Biol. 209, 5005-5016 (2006)  
10. Lu, Y., Shen, G. X., Su, W. H.:Flow visualization of dragonfly hovering via an electromechanical model. AIAA J. 45, 615-623 (2007)  
11. Lu, Y., Shen, G. X.:Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. J. Exp. Biol. 211, 1221-1230 (2008)  
12. Liu, H., Aono, H.:Size effects on insect hovering aerodynamics:an integrated computational study. Bioinspir. Biomim. 4, 015002 (2009)  
13. Lentink, D., Dickinson, M. H.:Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212, 2705-2719 (2009)  
14. Harbig, R. R., Sheridan, J., Thompson, M. C.:The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight. J. Fluid Mech. 751, 71-105 (2014)  
15. Phillips, N., Knowles, K., Bomphrey, R. J.:The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspir. Biomim. 10, 056020 (2015)  
16. Phillips, N., Knowles, K., Bomphrey, R. J.:Petiolate wings:effects on the leading-edge vortex in flapping flight. Interface Focus 7, 20160084 (2017)  
17. Kim, D., Gharib, M.:Experimental study of three-dimensional vortex structures in translating and rotating plates. Exp. Fluids 49, 329-339 (2010)  
18. Ozen, C. A., Rockwell, D.:Three-dimensional vortex structure on a rotating wing. J. Fluid. Mech. 707, 541-550 (2012)  
19. Ozen, C. A., Rockwell, D.:Flow structure on a rotating plate. Exp. Fluids 52, 207-223 (2012)  
20. Elimelech, Y., Kolomenskiy, D., Dalziel, S. B., et al.:Evolution of the leading-edge vortex over an accelerating rotating wing. Proc. IUTAM 7, 233-242 (2013)  
21. Garmann, D. J., Visbal, M. R., Orkwis, P. D.:Three-dimensional flowstructureandaerodynamicloadingonarevolvingwing. Phys. Fluids 25, 034101 (2013)  
22. Garmann, D. J., Visbal, M. R.:Dynamics of revolving wings for various aspect ratios. J. Fluid. Mech. 748, 932-956 (2014)  
23. Wolfinger, M., Rockwell, D.:Flow structure on a rotating wing:effect of radius of gyration. J. Fluid. Mech. 755, 83-110 (2014)  
24. Carr, Z. R., DeVoria, A. C., Ringuette, M. J.:Aspect-ratio effects on rotating wings:circulation and forces. J. Fluid. Mech. 767, 497-525 (2015)  
25. Percin, M., van Oudheusden, B. W.:Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates. Exp. Fluids 56, 1-19 (2015)  
26. Harbig, R. R., Sheridan, J., Thompson, M. C.:Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid. Mech. 717, 166-192 (2013)  
27. Harbig, R. R., Sheridan, J., Thompson, M. C.:Relationship between aerodynamic forces, flow structures and wing camber for rotating insect wing planforms. J. Fluid. Mech. 730, 52-75 (2013)  
28. Ansari, S. A., Phillips, N., Stabler, G., et al.:Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. Exp. Fluids 46, 777-798 (2009)  
29. Cheng, B., Sane, S. P., Barbera, G., et al.:Three-dimensional flow visualization and vorticity dynamics in revolving wings. Exp. Fluids 54, 1423 (2013)  
30. Carr, Z. R., Chen, C., Ringuette, M. J.:Finite-span rotating wings:three-dimensional vortex formation and variations with aspect ratio. Exp. Fluids 54, 1444 (2013)  
31. Wolfinger, M., Rockwell, D.:Transformation of flow structure on a rotating wing due to variation of radius of gyration. Exp. Fluids 56, 1-18 (2015)  
32. Jones, A. R., Medina, A., Spooner, H., et al.:Characterizing a burst leading-edge vortex on a rotating flat plate wing. Exp. Fluids 57, 52 (2016)  
33. Liu, H., Ellington, C. P., Kawachi, K., et al.:A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 201, 461-477 (1998)
34. Liu, H.:Integrated modeling of insect flight:from morphology, kinematics to aerodynamics. J. Comput. Phys. 228, 439-459 (2009). doi:10. 1016/j. jcp. 2008. 09. 020  
35. Jardin, T., David, L.:Coriolis effects enhance lift on revolving wings. Phys. Rev. E. 91, 031001(R) (2015)
36. Jardin, T.:Coriolis effect and the attachment of the leading edge vortex. J. Fluid Mech. 820, 312-340 (2017)  
37. Kolomenskiy, D., Elimelech, Y., Schneider, K.:Leading-edge vortex shedding from rotating wings. Fluid Dyn. Res. 46, 031421 (2014)  
38. Maxworthy, T.:The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing. J. Fluid. Mech. 587, 471-475 (2007)
39. Lentink, D., Dickinson, M. H.:Biofluiddynamic scaling of flapping, spinning and translating fins and wings. J. Exp. Biol. 212, 2691-2704 (2009)  
40. Limacher, E., Morton, C., Wood, D.:On the trajectory of leadingedge vortices under the influence of coriolis acceleration. J. Fluid Mech. 800, R1 (2016)  
41. Chen, D., Kolomenskiy, D., Liu, H.:Closed-form solution for the edge vortex of a revolving plate. J. Fluid Mech. 821, 200-218 (2017). doi:10. 1017/jfm. 2017. 257  
42. Wojcik, C. J., Buchholz, J. H. J.:Vorticity transport in the leadingedge vortex on a rotating blade. J. Fluid Mech. 743, 249-261 (2014)  
43. Engels, T., Kolomenskiy, D., Schneider, K., et al.:Helical vortices generated by flapping wings of bumblebees. (2017). (under review)
44. Engels, T., Kolomenskiy, D., Schneider, K., et al.:Bumblebee flight in heavy turbulence. Phys. Rev. Lett. 116, 028103 (2016)  
45. Lu, H., Lua, K. B., Lee, Y. J., et al.:Ground effect on the aerodynamics of three-dimensional hovering wings. Bioinspir. Biomim. 11, 066003 (2016)  
46. Wootton, R. J.:Support and deformability in insect wings. J. Zool. 193, 447-468 (1981)
47. Dickinson, M. H., Farley, C. T., Full, R. J., et al.:How animals move:an integrative view. Science 288, 100-106 (2000)  
48. Wootton, R. J.:Functional morphology of insect wings. Annu. Rev. Entomol. 37, 113-140 (1992)  
49. Rees, C. J.:Form and function in corrugated insect wings. Nature 256, 200-203 (1975)  
50. Combes, S. A., Daniel, T. L.:Into thin air:contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta. J. Exp. Biol 206, 2999-3006 (2003)  
51. Steppan, S. J.:Flexural stiffness patterns of butterfly wings (Papilionoidea). J. Res. Lepid. 35, 61-77 (2000)
52. Combes, S. A., Daniel, T. L.:Flexural stiffness in insect wings i. scaling and the influence of wing venation. J. Exp. Biol 206, 2979-2987 (2003)
53. Lehmann, F. O., Gorb, S., Nasir, N., et al.:Elastic deformation and energy loss of flapping fly wings. J. Exp. Biol. 214, 2949-2961 (2011)  
54. Weis-Fogh, T.:A rubber-like protein in insect cuticle. J. Exp. Biol. 37, 889-907 (1960)
55. Appel, E., Gorb, S. N.:Resilin-bearing wing vein joints in the dragonfly epiophlebia superstes. Bioinsp. Biomim. 6, 046006 (2011)  
56. Donoughe, S., Crall, J. D., Merz, R. A., et al.:Resilin in dragonfly and damselfly wings and its implications for wing flexibility. J. Morphol. 272, 1409-1421 (2011)  
57. Haas, F., Gorb, S., Blickhan, R.:The function of resilin in beetle wings. Proc. R. Soc. L B 267, 1375-1381 (2000)  
58. Mountcastle, A. M., Combes, S. A.:Wing flexibility enhances load-lifting capacity in bumblebees. Proc. R. Soc. B 280, 20130531 (2013). doi:10. 1098/rspb. 2013. 0531  
59. Jongerius, S. R., Lentink, D.:Structural analysis of a dragonfly wing. Exp. Mech. 50, 1323-1334 (2010). doi:10. 1007/s11340-010-9411-x  
60. Zheng, L., Hedrick, T. L., Mittal, R.:Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE 8, e53060 (2012). doi:10. 1371/journal. pone. 0053060
61. Sims, T. W., Palazotto, A. N., Norris, A.:A structural dynamic analysis of a manduca sexta forewing. Int. J. Micro Air Veh. 2, 119-140 (2010)  
62. Dickinson, M. H., Lighton, J. R. B.:Muscle efficiency and elastic storage in the flight motor of drosophila. Science 268, 87-90 (1995)  
63. Ha, N. S., Truong, Q. T., Goo, N. S., et al.:Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspir. Biomim. 8, 046008 (2013)  
64. Chen, J. S., Chen, J. Y., Chou, Y. F.:On the natural frequencies and mode shapes of dragonfly wings. J. Sound Vib. 313, 643-654 (2008)  
65. Sunada, S., Zeng, L., Kawachi, K.:The relationship between dragonfly wing structure and torsional deformation. J. Theor. Biol. 193, 39-45 (1998)  
2017
33
4
开始页码663
结束页码684
DOI10.1007/s10409-017-0677-4
基金项目H. Liu was partly supported by the Grant-in-Aid for Scientific Research on Innovative Areas (Grant 24120007) from the Japan Society for the Promotion of Science (JSPS). D. K. acknowledged the financial support from the JSPS Postdoctoral Fellowship.
点击率51
作者地址1 Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, Japan;
2 Shanghai-Jiao Tong University and Chiba University International Cooperative Research Centre(SJTU-CU ICRC), Shanghai 200240, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 212481