Finite versus small strain discrete dislocation analysis of cantilever bending of single crystals 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
期刊名称Acta Mechanica Sinica
作者Nilgoon Irani; Joris J. C. Remmers; Vikram S. Deshpande
栏目THEMED ARTICLES FOR CCTAM 2017 SPECIAL ISSUE-SOLID MECHANICS
摘要Plastic size effects in single crystals are investigated by using finite strain and small strain discrete dislocation plasticity to analyse the response of cantilever beam specimens. Crystals with both one and two active slip systems are analysed, as well as specimens with different beam aspect ratios. Over the range of specimen sizes analysed here, the bending stress versus applied tip displacement response has a strong hardening plastic component. This hardening rate increases with decreasing specimen size. The hardening rates are slightly lower when the finite strain discrete dislocation plasticity (DDP) formulation is employed as curving of the slip planes is accounted for in the finite strain formulation. This relaxes the back-stresses in the dislocation pile-ups and thereby reduces the hardening rate. Our calculations show that in line with the pure bending case, the bending stress in cantilever bending displays a plastic size dependence. However, unlike pure bending, the bending flow strength of the larger aspect ratio cantilever beams is appreciably smaller. This is attributed to the fact that for the same applied bending stress, longer beams have lower shear forces acting upon them and this results in a lower density of statistically stored dislocations.
英文栏目名称THEMED ARTICLES FOR CCTAM 2017 SPECIAL ISSUE-SOLID MECHANICS
关键词Dislocations; Bending; Finite strain; Size effects
参考文献1. Hikata, A., Chick, B. B., Elbaum, C.:Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 36, 229-236 (1965)  
2. Hikata, A., Sewell Jr, F. A., Elbaum, C.:Generation of ultrasonic second and third harmonics due to dislocations. b. Phys. Rev. 151, 442-449 (1966)  
3. Hikata, A., Elbaum, C.:Generation of ultrasonic second and third harmonics due to dislocations. I. Phys. Rev. 144, 469-477 (1966)  
4. Pruell, C., Kim, J. Y., Qu, J., et al.:Evaluation of plasticity driven material damage using Lamb waves. Appl. Phys. Lett. 91, 231911 (2007)  
5. Cantrell, J. H., Yost, W. T.:Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, 487-490 (2001)  
6. Kim, J. Y., Jacobs, L. J., Qu, J., et al.:Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120, 1266-1273 (2006)  
7. Frouin, J., Matikas, T. E., Na, J. K., et al.:In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cycling loading. In:Nondestructive Evaluation of Aging Materials and Composites c, Newport Beach, February 8 (1999)
8. Korneev, V. A., Demčenko, A.:Possible second-order nonlinear interactions of plane waves in an elastic solid. J. Acoust. Soc. Am. 135, 591-598 (2014)  
9. Chen, Z., Tang, G., Zhao, Y., et al.:Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 136, 2389-2404 (2014)
10. Tang, G., Jacobs, L. J., Qu, J.:Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity. J. Acoust. Soc. Am. 131, 2570-2578 (2012)  
11. Wang, Y., Achenbach, J. D.:The effect of cubic material nonlinearity on the propagation of torsional wave modes in a pipe. J. Acoust. Soc. Am. 140, 3874-3883 (2016)  
12. Liu, Y., Chillara, V. K., Lissenden, C. J., et al.:Third harmonic shear horizontal and Rayleigh Lamb waves in weakly nonlinear plates. J. Appl. Phys. 114, 114908 (2013)  
13. Lissenden, C. J., Liu, Y., Choi, G. W., et al.:Effect of localized microstructure evolution on higher harmonic generation of guided waves. J. Nondestruct. Eval. 33, 178-186 (2014)  
14. Rénier, M., Gennisson, J. L., Barrière, C., et al.:Fourth-order shear elastic constant assessment in quasi-incompressible soft solids. Appl. Phys. Lett. 93, 101912 (2008)  
15. Chillara, V. K., Lissenden, C. J.:Constitutive model for third harmonic generation in elastic solids. Int. J. Non Linear Mech. 82, 69-74 (2016)  
16. Hamilton, M. F., Ilinskii, Y. A., Zabolotskaya, E. A.:Separation of compressibility and shear deformation in the elastic energy density (L). J. Acoust. Soc. Am. 116, 41-44 (2004)  
17. Zhou, S., Shui, Y.:Nonlinear reflection of bulk acoustic waves at an interface. J. Appl. Phys. 72, 5070-5080 (1992)  
18. Deng, M.:Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85, 3051-3058 (1999)  
19. Bender, F. A., Kim, J. Y., Jacobs, L. J., et al.:The generation of second harmonic waves in an isotropic solid with quadratic nonlinearity under the presence of a stress-free boundary. Wave Motion 50, 146-161 (2003)
20. Nagy, P. B.:Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36, 375-381 (1998)  
21. Zhang, Z., Nagy, P. B., Hassan, W.:Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface. Ultrasonics 65, 165-176 (2016)  
2017
33
4
开始页码763
结束页码777
DOI10.1007/s10409-017-0682-7
点击率47
作者地址1 Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands;
2 Department of Mechanical Engineering, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands;
3 Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 212497