Flow dynamics analyses of pathophysiological liver lobules using porous media theory 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
期刊名称Acta Mechanica Sinica
作者Jinrong Hu; Shouqin Lü; Shiliang Feng; Mian Long;
栏目THEMED ARTICLES FOR CCTAM 2017 SPECIAL ISSUE-DYNAMICS, VIBRATION, AND CONTROL
摘要Blood flow inside the liver plays a key role in hepatic functions, and abnormal hemodynamics are highly correlated with liver diseases. To date, the flow field in an elementary building block of the organ, the liver lobule, is difficult to determine experimentally in humans due to its complicated structure, with radially branched microvasculature and the technical difficulties that derive from its geometric constraints. Here we established a set of 3D computational models for a liver lobule using porous media theory and analyzed its flow dynamics in normal, fibrotic, and cirrhotic lobules. Our simulations indicated that those approximations of ordinary flow in portal tracts (PTs) and the central vein, and of porous media flow in the sinusoidal network, were reasonable only for normal or fibrotic lobules. Models modified with high resistance in PTs and collateral vessels inside sinusoids were able to describe the flow features in cirrhotic lobules. Pressures, average velocities, and volume flow rates were profiled and the predictions compared well with experimental data. This study furthered our understanding of the flow dynamics features of liver lobules and the differences among normal, fibrotic, and cirrhotic lobules.
英文栏目名称THEMED ARTICLES FOR CCTAM 2017 SPECIAL ISSUE-DYNAMICS, VIBRATION, AND CONTROL
关键词Cirrhotic liver; Structural distortion; Portal hypertension; Collateral vessels
参考文献1. Wong, J., Johnston, B., Lee, S. S., et al.:A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J. Clin. Invest. 99, 2782-2790 (1997)  
2. Li, N., Lu, S. Q., Zhang, Y., et al.:Mechanokinetics of receptorligand interactions in cell adhesion. Acta Mech. Sin. 31, 248-258 (2015)  
3. Sato, Y., Tsukada, K., Hatakeyama, K.:Role of shear stress and immune responses in liver regeneration after a partial hepatectomy. Surg. Today 29, 1-9 (1999)  
4. Monga, S. P. S.:Molecular Pathology of Liver Diseases. Springer Science & Business Media, Berlin (2011)
5. Schuppan, D., Afdhal, N. H.:Liver cirrhosis. Lancet 371, 838-851 (2008)  
6. Tsochatzis, E. A., Bosch, J., Burroughs, A. K.:Liver cirrhosis. Lancet 383, 1749-1761 (2014)  
7. Rappaport, A., Borowy, Z., Lougheed, W., et al.:Subdivision of hexagonal liver lobules into a structural and functional unit. Role in hepatic physiology and pathology. Anat. Rec. 119, 11-33 (1954)
8. Kiernan, F.:The anatomy and physiology of the liver. Philos. Trans. R. Soc. Lond. 123, 711-770 (1833)  
9. Debbaut, C., Vierendeels, J., Casteleyn, C., et al.:Perfusion characteristics of the human hepatic microcirculation based on 3D reconstructions and computational fluid dynamic analysis. J. Biomech. Eng. 134, 011003 (2012)  
10. Bataller, R., Brenner, D. A.:Liver fibrosis. J. Clin. Invest. 115, 209-218 (2005)  
11. Sharma, M., Rameshbabu, C. S.:Collateral pathways in portal hypertension. J. Clin. Exp. Hepatol. 2, 338-352 (2012)  
12. Groszmann, R. J., Glickman, M., Blei, A. T., et al.:Wedged and free hepatic venous pressure measured with a balloon catheter. Gastroenterology 76, 253-258 (1979)
13. Yzet, T., Bouzerar, R., Baledent, O., et al.:Dynamic measurements of total hepatic blood flow with Phase Contrast MRI. Eur. J. Radiol. 73, 119-124 (2010)  
14. Genzel-Boroviczény, O., Strötgen, J., Harris, A. G., et al.:Orthogonal polarization spectral imaging (OPS):a novel method to measure the microcirculation in term and preterm infants transcutaneously. Pediatr. Res. 51, 386-391 (2002)  
15. Puhl, G., Schaser, K. D., Vollmar, B., et al.:Noninvasive in vivo analysis of the human hepatic microcirculation using orthogonal polorization spectral imaging. Transplantation 75, 756-761 (2003)  
16. Nakata, M., Nakamura, K., Koda, Y., et al.:Alterations to hepatic microcirculation in thioacetamide-induced cirrhotic livers of rats. Osaka City Med. J. 48, 1-8 (2002)
17. Shibayama, Y., Nakata, K.:Localization of increased hepatic vascular resistance in liver cirrhosis. Hepatology 5, 643-648 (1985)  
18. Bonfiglio, A., Leungchavaphongse, K., Repetto, R., et al.:Mathematical modeling of the circulation in the liver lobule. J. Biomech. Eng. 132, 111011 (2010)  
19. Debbaut, C., Vierendeels, J., Siggers, J. H., et al.:A 3D porous media liver lobule model:the importance of vascular septa and anisotropic permeability for homogeneous perfusion. Comput. Method. Biomec. 17, 1295-1310 (2014)  
20. Eringen, A. C.:Continuum Physics. Vol c:Mixtures and Em Field Theories. Academic Press, London (1976)
21. Ricken, T., Dahmen, U., Dirsch, O.:A biphasic model for sinusoidal liver perfusion remodeling after outflow obstruction. Biomech. Model. Mechanobiol. 9, 435-450 (2010)  
22. Rani, H. P., Sheu, T. W., Chang, T. M., et al.:Numerical investigation of non-Newtonian microcirculatory blood flow in hepatic lobule. J. Biomech. 39, 551-563 (2006)  
23. Lettmann, K. A., Hardtke-Wolenski, M.:The importance of liver microcirculation in promoting autoimmune hepatitis via maintaining an inflammatory cytokine milieu-a mathematical model study. J. Theor. Biol. 348, 33-46 (2014)  
24. Rezania, V., Coombe, D., Tuszynski, J. A.:A physiologically-based flow network model for hepatic drug elimination c:2D/3D DLA lobule models. Theor. Biol. Med. Modell. 13, 1-22 (2016)  
25. Wambaugh, J., Shah, I.:Simulating microdosimetry in a virtual hepatic lobule. PLoS Comput. Biol. 6, e1000756 (2010)  
26. Nishii, K., Reese, G., Moran, E. C., et al.:Multiscale computational model of fluid flow and matrix deformation in decellularized liver. J. Mech. Behav. Biomed. Mater. 57, 201-214 (2016)  
27. Peeters, G., Debbaut, C., Cornillie, P., et al.:A multilevel modeling framework to study hepatic perfusion characteristics in case of liver cirrhosis. J. Biomech. Eng. 137, 051007 (2015)  
28. Maass-Moreno, R., Rothe, C. F.:Distribution of pressure gradients along hepatic vasculature. Am. J. Physiol Heart. C 272, H2826-H2832 (1997)
29. Noordergraaf, A., Li, J. K. -J., Campbell, K. B.:Mammalian hemodynamics:a new similarity principle. J. Theor. Biol. 79, 485-489 (1979)  
30. Yoneda, M., Yoneda, M., Mawatari, H., et al.:Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with nonalcoholic fatty liver disease (NAFLD). Dig. Liver Dis. 40, 371-378 (2008)  
31. Dixon, J. B., Bhathal, P. S., O'brien, P. E.:Nonalcoholic fatty liver disease:predictors of nonalcoholic steatohepatitis and liver fibrosis in the severely obese. Gastroenterology 121, 91-100 (2001)  
32. Schiff, E. R., Sorrell, M. F., Maddrey, W. C.:Schiff's Diseases of the Liver. Lippincott Williams & Wilkins, Philadelphia (2007)
33. Hubscher, S. G., Burt, A. D., Portmann, B. C., et al.:MacSween's Pathology of the Liver. Elsevier Health Sciences, Amsterdam (2011)
34. Sturesson, C., Milstein, D. M., Post, I. C., et al.:Laser speckle contrast imaging for assessment of liver microcirculation. Microvasc. Res. 87, 34-40 (2013)  
35. Siggers, J. H., Leungchavaphongse, K., Ho, C. H., et al.:Mathematical model of blood and interstitial flow and lymph production in the liver. Biomech. Model. Mechanobiol. 13, 363-378 (2014)  
36. West, G. B., Brown, J. H., Enquist, B. J.:A general model for the origin of allometric scaling laws in biology. Science 276, 122-126 (1997)  
37. Koo, A., Liang, I. Y., Cheng, K. -K.:Effect of the ligation of hepatic artery on the microcirculation in the cirrhotic liver in the rat. Aust. J. Exp. Biol. Med. Sci. 54, 287-295 (1976)  
38. Macphee, P., Schmidt, E., Groom, A.:Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am. J. Physiol. Gastrl. 269, G692-G698 (1995)
39. Pan, Z., Wu, X. -J., Li, J. -S., et al.:Functional hepatic flow in patients with liver cirrhosis. World J. Gastroenterol. 10, 915-918 (2004)
40. Shaldon, S., Chiandussi, L., Guevara, L., et al.:The estimation of hepatic blood flow and intrahepatic shunted blood flow by colloidal heat-denatured human serum albumin labeled with I131. J. Clin. Invest. 40, 1346 (1961)  
41. Dancygier, H.:Clinical Hepatology:Principles and Practice of Hepatobiliary Diseases. Springer Science & Business Media, Berlin (2009)
42. Du, Y., Li, N., Yang, H., et al.:Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab. Chip. 17, 782-794 (2017)  
2017
33
4
开始页码823
结束页码832
DOI10.1007/s10409-017-0674-7
基金项目This work was supported by the National Natural Science Foundation of China (Grants 31230027, 91642203, and 31661143044) and the Frontier Science Key Project of Chinese Science Academy (Grant QYZDJ-SSW-JSC018).
点击率218
作者地址1 Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity(National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 554130