A novel parameterization method for the topology optimization of metallic antenna design 
 原文下载下载全文在线浏览在线浏览收藏到个人图书馆收藏到个人图书馆 
  
期刊名称Acta Mechanica Sinica
作者Qi Wang; Renjing Gao; Shutian Liu
栏目SOLID MECHANICS
摘要In this paper, based on a tangential interpolation function and an adaptively increasing penalty-factor strategy (TIPS), a novel parameterization method with a self-penalization scheme aimed for the topology optimization of metallic antenna design is proposed. The topology description is based on the material distribution approach. The proposed tangential interpolation function aims to associate the material resistance with design variables, in which the material resistance is expressed in the arctangent scale and the arctangent resistance is interpolated with the design variables using the rational approximation of material properties. During the optimization process, a strategy with an adaptively increasing penalty factor is used to eliminate the remaining gray scale elements, as illustrated in examples, in the topology optimization based on the proposed tangential interpolation function. Design results of typical examples express the effectiveness of the proposed TIPS parameterization.
英文栏目名称SOLID MECHANICS
关键词Topology optimization;Resistance sheets;Metallic antenna design;Antenna efficiency
参考文献1. Bendsøe, M.P., Kikuchi, N.:Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197-224 (1988)  
2. Bendsoe, M.P., Sigmund, O.:Topology Optimization:Theory, Methods and Applications. Springer, Berlin (2003)
3. Zhu, J.H., Zhang, W.H., Xia, L.:Topology optimization in aircraft and aerospace structures design. Arch. Comput. Methods Eng. 23, 595-622 (2016)  
4. Villegas, F.J., Cwik, T., Rahmat-Samii, Y., et al.:A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans. Antennas Propag. 52, 2424-2435 (2004)  
5. Koulouridis, S., Psychoudakis, D., Volakis, J.L.:Multiobjective optimal antenna design based on volumetric material optimization. IEEE Trans. Antennas Propag. 55, 594-603 (2007)  
6. Ouedraogo, R.O., Rothwell, E.J., Diaz, A., et al.:In situ optimization of metamaterial-inspired loop antennas. IEEE Antennas Wirel. Propag. Lett. 9, 75-78 (2010)  
7. Ouedraogo, R.O., Tang, J., Fuchi, K., et al.:A tunable dualband miniaturized monopole antenna for compact wireless devices. IEEE Antennas Wirel. Propag. Lett. 13, 1247-1250 (2014)  
8. Tang, J., Ouedraogo, R.O., Rothwell, E.J., et al.:A continuously tunable miniaturized patch antenna. IEEE Antennas Wirel. Propag. Lett. 13, 1080-1083 (2014)  
9. Sigmund, O.:On the usefulness of non-gradient approaches in topology optimization. Struct. Multidiscip. Optim. 43, 589-596 (2011)  
10. Guest, J.K., Genut, L.C.S.:Reducing dimensionality in topology optimization using adaptive design variable fields. Int. J. Numer. Methods Eng. 81, 1019-1045 (2010)
11. Ruiter, M.J.D., Keulen, F.V.:Topology optimization using a topology description function. Struct. Multidiscip. Optim. 26, 406-416 (2004)  
12. Zhou, S., Li, W., Sun, G., et al.:A level-set procedure for the design of electromagnetic metamaterials. Opt. Express 18, 6693-6702 (2010)  
13. Zhou, S., Li, W., Chen, Y., et al.:Topology optimization for negative permeability metamaterials using level-set algorithm. Acta Mater. 59, 2624-2636 (2011)  
14. Zhou, S., Li, W., Li, Q.:Level-set based topology optimization for electromagnetic dipole antenna design. J. Comput. Phys. 229, 6915-6930 (2010)  
15. Zhang, W., Yang, W., Zhou, J., et al.:Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2017)
16. Zhang, W., Zhang, J., Guo, X.:Lagrangian description based topology optimization-a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016)  
17. Guo, X., Zhang, W., Zhong, W.:Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)  
18. Zhang, W., Yuan, J., Zhang, J., et al.:A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct. Multidiscip. Optim. 53, 1243-1260 (2016)  
19. Guo, X., Zhang, W., Zhang, J., et al.:Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711-748 (2016)  
20. Zhang, W., Zhong, W., Guo, X.:Explicit layout control in optimal design of structural systems with multiple embedding components. Comput. Methods Appl. Mech. Eng. 290, 290-313 (2015)  
21. Deaton, J.D., Grandhi, R.V.:A survey of structural and multidisciplinary continuum topology optimization:post 2000. Struct. Multidiscip. Optim. 49, 1-38 (2014)  
22. Xu, S., Cai, Y., Cheng, G.:Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495-505 (2010)  
23. Guest, J.K.:Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199, 123-135 (2009)  
24. Wang, F., Lazarov, B.S., Sigmund, O.:On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767-784 (2011)  
25. Diaz, A.R., Sigmund, O.:A topology optimization method for design of negative permeability metamaterials. Struct. Multidiscip. Optim. 41, 163-177 (2010)  
26. Aage, N., Mortensen, N., Sigmund, O.:Topology optimization of metallic devices for microwave applications. Int. J. Numer. Methods Eng. 83, 228-248 (2010)
27. Hassan, E., Wadbro, E., Berggren, M.:Topology optimization of metallic antennas. IEEE Trans. Antennas Propag. 62, 2488-2500 (2014)  
28. Erentok, A., Sigmund, O.:Topology optimization of subwavelength antennas. IEEE Trans. Antennas Propag. 59, 58-69 (2011)  
29. Wadbro, E., Engström, C.:Topology and shape optimization of plasmonic nano-antennas. Comput. Methods Appl. Mech. Eng. 293, 155-169 (2015)  
30. Liu, S., Wang, Q., Gao, R.:A topology optimization method for design of small GPR antennas. Struct. Multidiscip. Optim. 50, 1165-1174 (2014)  
31. Liu, S., Wang, Q., Gao, R.:MoM-based topology optimization method for planar metallic antenna design. Acta. Mech. Sin. 32, 1058-1064 (2016)  
32. Harrington, R.F., Harrington, J.L.:Field Computation by Moment Methods. Oxford University Press, Oxford (1996)
33. Makarov, S.:Antenna and EM Modeling with MATLAB. Princeton University Press, Princeton (2002)
34. Davidson, D.B.:Computational Electromagnetics for RF and Microwave Engineering. Cambridge University Press, Cambridge (2010)
35. Rao, S.M., Wilton, D., Glisson, A.W.:Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30, 409-418 (1982)  
36. Stolpe, M., Svanberg, K.:An alternative interpolation scheme for minimum compliance topology optimization. Struct. Multidiscip. Optim. 22, 116-124 (2001)  
37. Svanberg, K.:The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359-373 (1987)  
2017
33
6
开始页码1040
结束页码1050
DOI10.1007/s10409-017-0709-0
基金项目This work is supported by the National Natural Science Foundation of China (Grants 11332004, 11372063, and 11572073) and the 111 Project (Grant B14013). These financial supports are gratefully acknowledged.
点击率191
作者地址1 School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China;
2 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:+86-10-82543905  传真:+86-10-82543907  电子邮箱: js@cstam.org.cn
总访问量: 840935