Characterization for elastic constants of fused deposition modelling-fabricated materials based on the virtual fields method and digital image correlation 
期刊名称Acta Mechanica Sinica
作者Quankun Cao; Huimin Xie
摘要Fused deposition modelling (FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method (VFM) is applied to characterize all the mechanical parameters (Q11, Q22, Q12, Q66) using the full-field strain, which is measured by digital image correlation (DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method (FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30°. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters (Q11, Q22, Q12, Q66) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants (Q11, Q22, Q12, Q66) were determined from the test with an angle of 27°.
关键词Fused deposition modelling;Virtual fields method;Digital image correlation;Orthotropic constitutive model;Disk compression
参考文献1. Kruth, J.P., Leu, M.C., Nakagawa, T.:Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47, 525-540 (1998)  
2. Upcraft, S., Fletcher, R.:The rapid prototyping technologies. Assem. Autom. 23, 318-330 (2003)  
3. Dawoud, M., Taha, I., Ebeid, S.J.:Mechanical behaviour of ABS:an experimental study using FDM and injection moulding techniques. J. Manuf. Process. 21, 39-45 (2016)  
4. Lee, C.S., Kim, S.G., Kim, H.J., et al.:Measurement of anisotropic compressive strength of rapid prototyping parts. J. Mater. Process. Technol. 187-188, 627-630 (2007)
5. Ahn, S.H., Montero, M., Odell, D.:Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8, 248-257 (2002)  
6. Casavola, C., Cazzato, A., Moramarco, V.:Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Mater. Des. 90, 453-458 (2016)  
7. Grédiac, M.:Principe des travaux virtuels et identification. Comptes Rendus de l'Académie des Sciences 309, 1-5 (1989). (in French with abridged English version)  
8. Grédiac, M., Toussaint, E., Pierron, F.:Special virtual fields for the direct determination of material parameters with the virtual fields method 1 principle and definition. Int. J. Solids Struct. 39, 1691-2705 (2002)
9. Grédiac, M., Toussaint, E., Pierron, F.:Special virtual fields for the direct determination of material parameters with the virtual fields method 2 application to in-plane properties. Int. J. Solids Struct. 39, 2707-2730 (2002)  
10. Rahmani, B., Villemure, I., Levesque, M.:Regularized virtual fields method for mechanical properties identification of composites materials. Comput. Methods Appl. Mech. Eng. 278, 543-566 (2014)  
11. Rossi, M., Pierron, F., Stamborska, M.:Application of the virtual fields method to large strain anisotropic plasticity. Int. J. Solids Struct. 97-98, 322-335 (2016)
12. Rossi, M., Pierron, F.:On the use of simulated experiments in designing tests for material characterization from full-field measurements. Int. J. Solids Struct. 49, 420-435 (2012)  
13. Pierron, F., Vert, G., Burguete, R.:Identification of the orthotropic elastic stiffnesses of composites with the virtual fields method:sensitivity study and experimental validation. Strain 43, 250-259 (2007)  
14. Jiang, L.B., Guo, B.Q., Xie, H.M.:Identification of the elastic stiffness of composites using the virtual fields method and digital image correlation. Acta. Mech. Sin. 31, 173-180 (2015)  
15. Post, D., Bongtae, H., Peter, I.:High Sensitivity moiré:Experimental Analysis for Mechanics and Materials. Springer, New York (1997)
16. Badulescu, C., Grédiac, M., Mathias, J.D., et al.:A procedure for accurate one-dimensional strain measurement using the grid method. Exp. Mech. 49, 841-854 (2009)  
17. Sutton, M.A., Wolters, W.J., Peters, W.H., et al.:Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1, 133-139 (1983)  
18. Pan, B., Qian, K., Xie, H., Asundi, A.:Two-dimensional digital image correlation for in-plane displacement and strain measurement:a review. Meas. Sci. Technol. 20, 062001 (2009)  
19. Hu, Z., Xie, H., Lu, J., et al.:Study of the performance of different subpixel image correlation methods in 3D digital image correlation. Appl. Opt. 49, 4044-4051 (2010)  
20. Gao, Y., Cheng, T., Su, Y., et al.:High-efficiency and high-accuracy digital image correlation for three-dimensional measurement. Opt. Laser Eng. 65, 73-80 (2015)  
21. Jones, R.M.:Mechanics of Composite Material. Taylor & Franics, Philadelohia (1999)
22. Fabrice, P., Michel, G.:The Virtual Fields Method. Springer, New York (2012)
作者地址AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

版权所有 中国力学学会 | 网站内容未经许可,不得转载。 | 京ICP备05039218号-1, 审核日期:2014年2月26日
北京市北四环西路15号  邮政编码:100190  联系电话:62559588  传真:62559588  电子邮箱:
总访问量: 6271419